无小区大规模MIMO系统中的稀疏大规模衰落解码

Shuaifei Chen, Jiayi Zhang, Emil Björnson, Ozlem Tugfe Demir, B. Ai
{"title":"无小区大规模MIMO系统中的稀疏大规模衰落解码","authors":"Shuaifei Chen, Jiayi Zhang, Emil Björnson, Ozlem Tugfe Demir, B. Ai","doi":"10.48550/arXiv.2205.02733","DOIUrl":null,"url":null,"abstract":"Cell-free massive multiple-input multiple-output (CF mMIMO) systems are characterized by having many more access points (APs) than user equipments (UEs). A key challenge is to determine which APs should serve which UEs. Previous work has tackled this combinatorial problem heuristically. This paper proposes a sparse large-scale fading decoding (LSFD) design for CF mMIMO to jointly optimize the association and LSFD. We formulate a group sparsity problem and then solve it using a proximal algorithm with block-coordinate descent. Numerical results show that sparse LSFD achieves almost the same spectral efficiency as optimal LSFD, thus achieving a higher energy efficiency since the processing and signaling are reduced.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sparse Large-Scale Fading Decoding in Cell-Free Massive MIMO Systems\",\"authors\":\"Shuaifei Chen, Jiayi Zhang, Emil Björnson, Ozlem Tugfe Demir, B. Ai\",\"doi\":\"10.48550/arXiv.2205.02733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cell-free massive multiple-input multiple-output (CF mMIMO) systems are characterized by having many more access points (APs) than user equipments (UEs). A key challenge is to determine which APs should serve which UEs. Previous work has tackled this combinatorial problem heuristically. This paper proposes a sparse large-scale fading decoding (LSFD) design for CF mMIMO to jointly optimize the association and LSFD. We formulate a group sparsity problem and then solve it using a proximal algorithm with block-coordinate descent. Numerical results show that sparse LSFD achieves almost the same spectral efficiency as optimal LSFD, thus achieving a higher energy efficiency since the processing and signaling are reduced.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.02733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

无单元大规模多输入多输出(CF mMIMO)系统的特点是具有比用户设备(ue)更多的接入点(ap)。一个关键的挑战是确定哪些ap应该服务于哪些ue。以前的工作已经启发式地解决了这个组合问题。本文提出了一种CF mimo的稀疏大规模衰落解码(LSFD)设计,以共同优化关联和LSFD。我们提出了一个群稀疏性问题,然后使用一种具有块坐标下降的近端算法来求解它。数值结果表明,稀疏LSFD的频谱效率与最优LSFD几乎相同,由于减少了处理和信令,因此获得了更高的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Large-Scale Fading Decoding in Cell-Free Massive MIMO Systems
Cell-free massive multiple-input multiple-output (CF mMIMO) systems are characterized by having many more access points (APs) than user equipments (UEs). A key challenge is to determine which APs should serve which UEs. Previous work has tackled this combinatorial problem heuristically. This paper proposes a sparse large-scale fading decoding (LSFD) design for CF mMIMO to jointly optimize the association and LSFD. We formulate a group sparsity problem and then solve it using a proximal algorithm with block-coordinate descent. Numerical results show that sparse LSFD achieves almost the same spectral efficiency as optimal LSFD, thus achieving a higher energy efficiency since the processing and signaling are reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信