基于多通道贝叶斯自适应共振联想记忆的环境学习和拓扑图构建

W. Chin, C. Loo, N. Kubota
{"title":"基于多通道贝叶斯自适应共振联想记忆的环境学习和拓扑图构建","authors":"W. Chin, C. Loo, N. Kubota","doi":"10.1109/ICIEV.2015.7334064","DOIUrl":null,"url":null,"abstract":"This paper presents a new network for environment learning and online topological map building. It comprises two layers: input and memory. The input layer collects sensory information and incrementally categorizes the obtained information into a set of topological nodes. In the memory layer, edges are connect clustered information (nodes) to form a topological map. Edges store robot's actions and bearing. The advantages of the proposed method are: 1) it represents multiple places using multidimensional Gaussian distribution and does not require prior knowledge to make it work in a natural environment; 2) it can process more than one sensory source simultaneously in continuous space during robot navigation; and 3) it is an incremental and using Bayes' decision theory for learning and inference. Finally, the proposed method was validated using several standardized benchmark datasets.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-channel Bayesian adaptive resonance associative memory for environment learning and topological map building\",\"authors\":\"W. Chin, C. Loo, N. Kubota\",\"doi\":\"10.1109/ICIEV.2015.7334064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new network for environment learning and online topological map building. It comprises two layers: input and memory. The input layer collects sensory information and incrementally categorizes the obtained information into a set of topological nodes. In the memory layer, edges are connect clustered information (nodes) to form a topological map. Edges store robot's actions and bearing. The advantages of the proposed method are: 1) it represents multiple places using multidimensional Gaussian distribution and does not require prior knowledge to make it work in a natural environment; 2) it can process more than one sensory source simultaneously in continuous space during robot navigation; and 3) it is an incremental and using Bayes' decision theory for learning and inference. Finally, the proposed method was validated using several standardized benchmark datasets.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于环境学习和在线拓扑图构建的新型网络。它包括两层:输入和存储。输入层收集感官信息,并将获得的信息增量地分类为一组拓扑节点。在内存层,边连接聚类信息(节点)形成拓扑映射。边缘存储机器人的动作和方位。该方法的优点是:1)它使用多维高斯分布表示多个地点,并且不需要先验知识使其在自然环境中工作;2)机器人导航过程中可以在连续空间中同时处理多个感测源;3)采用贝叶斯决策理论进行学习和推理。最后,使用多个标准化基准数据集对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-channel Bayesian adaptive resonance associative memory for environment learning and topological map building
This paper presents a new network for environment learning and online topological map building. It comprises two layers: input and memory. The input layer collects sensory information and incrementally categorizes the obtained information into a set of topological nodes. In the memory layer, edges are connect clustered information (nodes) to form a topological map. Edges store robot's actions and bearing. The advantages of the proposed method are: 1) it represents multiple places using multidimensional Gaussian distribution and does not require prior knowledge to make it work in a natural environment; 2) it can process more than one sensory source simultaneously in continuous space during robot navigation; and 3) it is an incremental and using Bayes' decision theory for learning and inference. Finally, the proposed method was validated using several standardized benchmark datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信