ICP-RIE对不同图型蓝宝石结构表面性能的研究

Chun-Ming Chang, M. Shiao, D. Chiang, Mao-Jung Huang, C. Yang, W. Hsueh
{"title":"ICP-RIE对不同图型蓝宝石结构表面性能的研究","authors":"Chun-Ming Chang, M. Shiao, D. Chiang, Mao-Jung Huang, C. Yang, W. Hsueh","doi":"10.1109/NEMS.2013.6559754","DOIUrl":null,"url":null,"abstract":"In this paper, we demonstrate and compare the formation of ordered etching masks for submicron patterned sapphire through use of the nanosphere lithography and nanoimprint lithography methods. Both NSL and NIL were applied to produce the submicron honeycomb network and cone protrusion array structure on the sapphire surface as etching masks. The sequent ICP-RIE technique was applied to further etch the sapphire under the mask. Two types of submicron pattern were obtained on the substrate surface after the etching processes were completed. One type of substrate was the submicron hole array structure and another type was the cone array structure. The working pressure had a considerable effect on the shape geometry and etching rate. The contact angles of the untreated substrate and two differing patterned sapphire substrates were measured and compared. From the contact angle measurement results, we concluded that the protruded contact area dominated the hydrophobic or hydrophilic property.","PeriodicalId":308928,"journal":{"name":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface property study of different patterning sapphire structures by ICP-RIE\",\"authors\":\"Chun-Ming Chang, M. Shiao, D. Chiang, Mao-Jung Huang, C. Yang, W. Hsueh\",\"doi\":\"10.1109/NEMS.2013.6559754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we demonstrate and compare the formation of ordered etching masks for submicron patterned sapphire through use of the nanosphere lithography and nanoimprint lithography methods. Both NSL and NIL were applied to produce the submicron honeycomb network and cone protrusion array structure on the sapphire surface as etching masks. The sequent ICP-RIE technique was applied to further etch the sapphire under the mask. Two types of submicron pattern were obtained on the substrate surface after the etching processes were completed. One type of substrate was the submicron hole array structure and another type was the cone array structure. The working pressure had a considerable effect on the shape geometry and etching rate. The contact angles of the untreated substrate and two differing patterned sapphire substrates were measured and compared. From the contact angle measurement results, we concluded that the protruded contact area dominated the hydrophobic or hydrophilic property.\",\"PeriodicalId\":308928,\"journal\":{\"name\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2013.6559754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2013.6559754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们演示并比较了使用纳米球光刻和纳米压印光刻方法形成亚微米图案蓝宝石的有序蚀刻掩模。利用NSL和NIL在蓝宝石表面制备了亚微米蜂窝网络和锥形突出阵列结构作为蚀刻掩模。随后应用ICP-RIE技术在掩膜下进一步蚀刻蓝宝石。蚀刻完成后,在衬底表面得到了两种类型的亚微米图案。一种是亚微米孔阵列结构,另一种是锥阵列结构。工作压力对形状几何和刻蚀速率有较大的影响。测量和比较了未经处理的衬底和两种不同图案的蓝宝石衬底的接触角。从接触角测量结果来看,突出的接触面积决定了材料的疏水性或亲水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Surface property study of different patterning sapphire structures by ICP-RIE
In this paper, we demonstrate and compare the formation of ordered etching masks for submicron patterned sapphire through use of the nanosphere lithography and nanoimprint lithography methods. Both NSL and NIL were applied to produce the submicron honeycomb network and cone protrusion array structure on the sapphire surface as etching masks. The sequent ICP-RIE technique was applied to further etch the sapphire under the mask. Two types of submicron pattern were obtained on the substrate surface after the etching processes were completed. One type of substrate was the submicron hole array structure and another type was the cone array structure. The working pressure had a considerable effect on the shape geometry and etching rate. The contact angles of the untreated substrate and two differing patterned sapphire substrates were measured and compared. From the contact angle measurement results, we concluded that the protruded contact area dominated the hydrophobic or hydrophilic property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信