使用浅卷积网络学习的伪影检测地图

T. Goodall, A. Bovik
{"title":"使用浅卷积网络学习的伪影检测地图","authors":"T. Goodall, A. Bovik","doi":"10.1109/SSIAI.2018.8470369","DOIUrl":null,"url":null,"abstract":"Automatically identifying the locations and severities of video artifacts is a difficult problem. We have developed a general method for detecting local artifacts by learning differences between distorted and pristine video frames. Our model, which we call the Video Impairment Mapper (VID-MAP), produces a full resolution map of artifact detection probabilities based on comparisons of exitatory and inhibatory convolutional responses. Validation on a large database shows that our method outperforms the previous state-of-the-art. A software release of VID-MAP that was trained to produce upscaling and combing detection probability maps is available online: http://live.ece.utexas.edu/research/quality/VIDMAP release.zip for public use and evaluation.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artifact Detection Maps Learned using Shallow Convolutional Networks\",\"authors\":\"T. Goodall, A. Bovik\",\"doi\":\"10.1109/SSIAI.2018.8470369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatically identifying the locations and severities of video artifacts is a difficult problem. We have developed a general method for detecting local artifacts by learning differences between distorted and pristine video frames. Our model, which we call the Video Impairment Mapper (VID-MAP), produces a full resolution map of artifact detection probabilities based on comparisons of exitatory and inhibatory convolutional responses. Validation on a large database shows that our method outperforms the previous state-of-the-art. A software release of VID-MAP that was trained to produce upscaling and combing detection probability maps is available online: http://live.ece.utexas.edu/research/quality/VIDMAP release.zip for public use and evaluation.\",\"PeriodicalId\":422209,\"journal\":{\"name\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSIAI.2018.8470369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动识别视频伪影的位置和严重程度是一个难题。我们开发了一种通过学习扭曲和原始视频帧之间的差异来检测局部伪影的通用方法。我们的模型,我们称之为视频损伤映射器(VID-MAP),基于兴奋性和抑制性卷积响应的比较,生成伪信号检测概率的全分辨率地图。在大型数据库上的验证表明,我们的方法优于以前的最先进的方法。VID-MAP的软件版本经过培训,可以制作升级和梳理检测概率图:http://live.ece.utexas.edu/research/quality/VIDMAP release.zip,供公众使用和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artifact Detection Maps Learned using Shallow Convolutional Networks
Automatically identifying the locations and severities of video artifacts is a difficult problem. We have developed a general method for detecting local artifacts by learning differences between distorted and pristine video frames. Our model, which we call the Video Impairment Mapper (VID-MAP), produces a full resolution map of artifact detection probabilities based on comparisons of exitatory and inhibatory convolutional responses. Validation on a large database shows that our method outperforms the previous state-of-the-art. A software release of VID-MAP that was trained to produce upscaling and combing detection probability maps is available online: http://live.ece.utexas.edu/research/quality/VIDMAP release.zip for public use and evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信