复杂网络中社区检测的动态模型

M. G. Quiles, E. Zorzal, E. Macau
{"title":"复杂网络中社区检测的动态模型","authors":"M. G. Quiles, E. Zorzal, E. Macau","doi":"10.1109/IJCNN.2013.6706944","DOIUrl":null,"url":null,"abstract":"One important feature observed in several complex networks is the structure of communities, or modular structure. Detecting communities is still a big challenge for researchers, specially the development of models to deal with dynamic networks. Here, we propose a new method for detecting communities by using a dynamical model. The first step consists of generating a spatial representation, named particle, for each vertex in the network. With these two representation, network structure and the spatial particles, we define the model's dynamics by means of two interactions types: the first is related to the network structure, or relational, and it is responsible for approaching particles representing neighbor vertices; the second, repulsive, is generated according to the spatial position of each particle and is responsible to make each unrelated particle, according to the network structure, to repel each other. Thus, after a couple of iteration, we observe the formation of groups of particles representing communities. On the other hand, distinct communities are separated according to the spatial positions of their particles. Simulation results show that our model achieves good results on the two benchmark models taken into account and that it can also deal with dynamic networks owing to its intrinsic dynamics.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A dynamical model for community detection in complex networks\",\"authors\":\"M. G. Quiles, E. Zorzal, E. Macau\",\"doi\":\"10.1109/IJCNN.2013.6706944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One important feature observed in several complex networks is the structure of communities, or modular structure. Detecting communities is still a big challenge for researchers, specially the development of models to deal with dynamic networks. Here, we propose a new method for detecting communities by using a dynamical model. The first step consists of generating a spatial representation, named particle, for each vertex in the network. With these two representation, network structure and the spatial particles, we define the model's dynamics by means of two interactions types: the first is related to the network structure, or relational, and it is responsible for approaching particles representing neighbor vertices; the second, repulsive, is generated according to the spatial position of each particle and is responsible to make each unrelated particle, according to the network structure, to repel each other. Thus, after a couple of iteration, we observe the formation of groups of particles representing communities. On the other hand, distinct communities are separated according to the spatial positions of their particles. Simulation results show that our model achieves good results on the two benchmark models taken into account and that it can also deal with dynamic networks owing to its intrinsic dynamics.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在一些复杂网络中观察到的一个重要特征是社区结构,或模块结构。对于研究人员来说,社区检测仍然是一个很大的挑战,特别是开发处理动态网络的模型。本文提出了一种利用动态模型检测群落的新方法。第一步包括为网络中的每个顶点生成一个空间表示,称为粒子。利用网络结构和空间粒子这两种表示,我们通过两种相互作用类型来定义模型的动力学:第一种是与网络结构相关的,或者说是关系的,它负责接近代表相邻顶点的粒子;第二种是斥力,它是根据每个粒子的空间位置产生的,负责使每个不相关的粒子根据网络结构相互排斥。因此,经过几次迭代后,我们观察到代表群落的粒子群的形成。另一方面,不同的群落根据其粒子的空间位置被分离。仿真结果表明,该模型在考虑两种基准模型的情况下取得了较好的效果,并且由于其固有的动态性,该模型也可以处理动态网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dynamical model for community detection in complex networks
One important feature observed in several complex networks is the structure of communities, or modular structure. Detecting communities is still a big challenge for researchers, specially the development of models to deal with dynamic networks. Here, we propose a new method for detecting communities by using a dynamical model. The first step consists of generating a spatial representation, named particle, for each vertex in the network. With these two representation, network structure and the spatial particles, we define the model's dynamics by means of two interactions types: the first is related to the network structure, or relational, and it is responsible for approaching particles representing neighbor vertices; the second, repulsive, is generated according to the spatial position of each particle and is responsible to make each unrelated particle, according to the network structure, to repel each other. Thus, after a couple of iteration, we observe the formation of groups of particles representing communities. On the other hand, distinct communities are separated according to the spatial positions of their particles. Simulation results show that our model achieves good results on the two benchmark models taken into account and that it can also deal with dynamic networks owing to its intrinsic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信