一种新的基于评估向量的自适应元启发式投资组合优化方法

O. A. C. Cortes, Leticia De Fátima Corrêa Costa, J. Costa
{"title":"一种新的基于评估向量的自适应元启发式投资组合优化方法","authors":"O. A. C. Cortes, Leticia De Fátima Corrêa Costa, J. Costa","doi":"10.4114/intartif.vol22iss64pp85-101","DOIUrl":null,"url":null,"abstract":"This article describes a new adaptive metaheuristic based on a vector evaluated approach for solving multiobjective problems. We called our proposed algorithm Vector Evaluated Meta-Heuristic. Its main idea is to evolve two populations independently, exchanging information between them, i.e., the first population evolves according to the best individual of the second population and vice-versa. The choice of which algorithm will be executed on each generation is carried out stochastically among three evolutionary algorithms well known in the literature: PSO, DE, ABC. In order to evaluate the results, we used an established metric in multiobjective evolutionary algorithms called hypervolume. Tests have shown that the adaptive metaheuristic reaches the best hyper-volumes in three of ZDT benchmarks functions and, also, in two portfolios of a real-world problem called portfolio investment optimization. The results show that our algorithm improved the Pareto curve when compared to the hypervolumes of each heuristic separately.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Uma Nova Meta-heurística Adaptativa Baseada em Vetor de Avaliações para Otimização de Portfólios de Investimentos\",\"authors\":\"O. A. C. Cortes, Leticia De Fátima Corrêa Costa, J. Costa\",\"doi\":\"10.4114/intartif.vol22iss64pp85-101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a new adaptive metaheuristic based on a vector evaluated approach for solving multiobjective problems. We called our proposed algorithm Vector Evaluated Meta-Heuristic. Its main idea is to evolve two populations independently, exchanging information between them, i.e., the first population evolves according to the best individual of the second population and vice-versa. The choice of which algorithm will be executed on each generation is carried out stochastically among three evolutionary algorithms well known in the literature: PSO, DE, ABC. In order to evaluate the results, we used an established metric in multiobjective evolutionary algorithms called hypervolume. Tests have shown that the adaptive metaheuristic reaches the best hyper-volumes in three of ZDT benchmarks functions and, also, in two portfolios of a real-world problem called portfolio investment optimization. The results show that our algorithm improved the Pareto curve when compared to the hypervolumes of each heuristic separately.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol22iss64pp85-101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol22iss64pp85-101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了一种新的基于向量评估的自适应元启发式方法,用于求解多目标问题。我们称我们提出的算法为向量评估元启发式。其主要思想是使两个种群独立进化,并在它们之间交换信息,即第一个种群根据第二个种群的最佳个体进化,反之亦然。在文献中已知的三种进化算法:PSO, DE, ABC中随机选择每代执行哪种算法。为了评估结果,我们使用了多目标进化算法中称为hypervolume的既定度量。测试表明,自适应元启发式在三个ZDT基准函数中达到最佳超容量,并且在称为组合投资优化的现实问题的两个投资组合中也达到最佳超容量。结果表明,与每个启发式的超体积相比,我们的算法改进了Pareto曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uma Nova Meta-heurística Adaptativa Baseada em Vetor de Avaliações para Otimização de Portfólios de Investimentos
This article describes a new adaptive metaheuristic based on a vector evaluated approach for solving multiobjective problems. We called our proposed algorithm Vector Evaluated Meta-Heuristic. Its main idea is to evolve two populations independently, exchanging information between them, i.e., the first population evolves according to the best individual of the second population and vice-versa. The choice of which algorithm will be executed on each generation is carried out stochastically among three evolutionary algorithms well known in the literature: PSO, DE, ABC. In order to evaluate the results, we used an established metric in multiobjective evolutionary algorithms called hypervolume. Tests have shown that the adaptive metaheuristic reaches the best hyper-volumes in three of ZDT benchmarks functions and, also, in two portfolios of a real-world problem called portfolio investment optimization. The results show that our algorithm improved the Pareto curve when compared to the hypervolumes of each heuristic separately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信