{"title":"均匀分布的二维仿射不变量,可以调整到任何凸特征域","authors":"I. Rigoutsos","doi":"10.1109/ICCV.1998.710782","DOIUrl":null,"url":null,"abstract":"We derive and discuss a set of parametric equations which, when given a convex 2D feature domain, K, will generate affine invariants with the property that the invariants' values are uniformly distributed in the region [0,1]/spl times/[0,1]. Definition of the shape of the convex domain K allows computation of the parameters' values and thus the proposed scheme can be tuned to a specific feature domain. The features of all recognizable objects (models) are assumed to be two-dimensional points and uniformly distributed over K. The scheme leads to improved discrimination power, improved computational-load and storage-load balancing and can also be used to determine and identify biases in the database of recognizable models (over-represented constructs of object points). Obvious enhancements produce rigid-transformation and similarity-transformation invariants with the same good distribution properties, making this approach generally applicable. An extension to the case of affine invariants for feature points in three-dimensional space, with the invariants now being uniformly distributed in the region [0,1]/spl times/[0,1]/spl times/[0,1], has also been carried out and is discussed briefly. We present results for several 2D convex domains using both synthetic data and real databases.","PeriodicalId":270671,"journal":{"name":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"2D-affine invariants that distribute uniformly and can be tuned to any convex feature domain\",\"authors\":\"I. Rigoutsos\",\"doi\":\"10.1109/ICCV.1998.710782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive and discuss a set of parametric equations which, when given a convex 2D feature domain, K, will generate affine invariants with the property that the invariants' values are uniformly distributed in the region [0,1]/spl times/[0,1]. Definition of the shape of the convex domain K allows computation of the parameters' values and thus the proposed scheme can be tuned to a specific feature domain. The features of all recognizable objects (models) are assumed to be two-dimensional points and uniformly distributed over K. The scheme leads to improved discrimination power, improved computational-load and storage-load balancing and can also be used to determine and identify biases in the database of recognizable models (over-represented constructs of object points). Obvious enhancements produce rigid-transformation and similarity-transformation invariants with the same good distribution properties, making this approach generally applicable. An extension to the case of affine invariants for feature points in three-dimensional space, with the invariants now being uniformly distributed in the region [0,1]/spl times/[0,1]/spl times/[0,1], has also been carried out and is discussed briefly. We present results for several 2D convex domains using both synthetic data and real databases.\",\"PeriodicalId\":270671,\"journal\":{\"name\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.1998.710782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.1998.710782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
2D-affine invariants that distribute uniformly and can be tuned to any convex feature domain
We derive and discuss a set of parametric equations which, when given a convex 2D feature domain, K, will generate affine invariants with the property that the invariants' values are uniformly distributed in the region [0,1]/spl times/[0,1]. Definition of the shape of the convex domain K allows computation of the parameters' values and thus the proposed scheme can be tuned to a specific feature domain. The features of all recognizable objects (models) are assumed to be two-dimensional points and uniformly distributed over K. The scheme leads to improved discrimination power, improved computational-load and storage-load balancing and can also be used to determine and identify biases in the database of recognizable models (over-represented constructs of object points). Obvious enhancements produce rigid-transformation and similarity-transformation invariants with the same good distribution properties, making this approach generally applicable. An extension to the case of affine invariants for feature points in three-dimensional space, with the invariants now being uniformly distributed in the region [0,1]/spl times/[0,1]/spl times/[0,1], has also been carried out and is discussed briefly. We present results for several 2D convex domains using both synthetic data and real databases.