有限体积元鲁棒BDDC算法

Ya Su, Xuemin Tu, Yingxiang Xu
{"title":"有限体积元鲁棒BDDC算法","authors":"Ya Su, Xuemin Tu, Yingxiang Xu","doi":"10.1553/etna_vol58s66","DOIUrl":null,"url":null,"abstract":". The balancing domain decomposition by constraints (BDDC) method is applied to the linear system arising from the finite volume element method (FVEM) discretization of a scalar elliptic equation. The FVEMs share nice features of both finite element and finite volume methods and are flexible for complicated geometries with good conservation properties. However, the resulting linear system usually is asymmetric. The generalized minimal residual (GMRES) method is used to accelerate convergence. The proposed BDDC methods allow for jumps of the coefficient across subdomain interfaces. When jumps of the coefficient appear inside subdomains, the BDDC algorithms adaptively choose the primal variables deriving from the eigenvectors of some local generalized eigenvalue problems. The adaptive BDDC algorithms with advanced deluxe scaling can ensure good performance with highly discontinuous coefficients. A convergence analysis of the BDDC method with a preconditioned GMRES iteration is provided, and several numerical experiments confirm the theoretical estimate.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust BDDC algorithms for finite volume element methods\",\"authors\":\"Ya Su, Xuemin Tu, Yingxiang Xu\",\"doi\":\"10.1553/etna_vol58s66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The balancing domain decomposition by constraints (BDDC) method is applied to the linear system arising from the finite volume element method (FVEM) discretization of a scalar elliptic equation. The FVEMs share nice features of both finite element and finite volume methods and are flexible for complicated geometries with good conservation properties. However, the resulting linear system usually is asymmetric. The generalized minimal residual (GMRES) method is used to accelerate convergence. The proposed BDDC methods allow for jumps of the coefficient across subdomain interfaces. When jumps of the coefficient appear inside subdomains, the BDDC algorithms adaptively choose the primal variables deriving from the eigenvectors of some local generalized eigenvalue problems. The adaptive BDDC algorithms with advanced deluxe scaling can ensure good performance with highly discontinuous coefficients. A convergence analysis of the BDDC method with a preconditioned GMRES iteration is provided, and several numerical experiments confirm the theoretical estimate.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol58s66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol58s66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 将约束平衡域分解(BDDC)方法应用于由有限体积元法(FVEM)离散标量椭圆方程得到的线性系统。FVEMs具有有限元法和有限体积法的优点,对复杂几何形状具有良好的灵活性和守恒性。然而,得到的线性系统通常是不对称的。采用广义最小残差(GMRES)方法加快收敛速度。所提出的BDDC方法允许跨子域接口的系数跳跃。当系数在子域内出现跳跃时,BDDC算法自适应地选择由局部广义特征值问题的特征向量导出的原始变量。先进的高级缩放自适应BDDC算法可以保证在高度不连续系数下的良好性能。给出了预处理GMRES迭代下BDDC方法的收敛性分析,并通过数值实验验证了理论估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust BDDC algorithms for finite volume element methods
. The balancing domain decomposition by constraints (BDDC) method is applied to the linear system arising from the finite volume element method (FVEM) discretization of a scalar elliptic equation. The FVEMs share nice features of both finite element and finite volume methods and are flexible for complicated geometries with good conservation properties. However, the resulting linear system usually is asymmetric. The generalized minimal residual (GMRES) method is used to accelerate convergence. The proposed BDDC methods allow for jumps of the coefficient across subdomain interfaces. When jumps of the coefficient appear inside subdomains, the BDDC algorithms adaptively choose the primal variables deriving from the eigenvectors of some local generalized eigenvalue problems. The adaptive BDDC algorithms with advanced deluxe scaling can ensure good performance with highly discontinuous coefficients. A convergence analysis of the BDDC method with a preconditioned GMRES iteration is provided, and several numerical experiments confirm the theoretical estimate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信