基于运动掩蔽的移动车辆环境

Tamás Mészégető, Benedek Tass, M. Szántó
{"title":"基于运动掩蔽的移动车辆环境","authors":"Tamás Mészégető, Benedek Tass, M. Szántó","doi":"10.1109/ICCAIRO47923.2019.00013","DOIUrl":null,"url":null,"abstract":"The problem of autonomous vehicle navigation requires the use of high-definition and well-maintained maps. Such a map can be constructed using the method developed for the so-called CrowdMapping architecture. This paper proposes a method for constructing masks for such map creation purposes via segmenting dynamic and static regions of an image sequence. The segmentation is performed by comparing a calculated and a predicted optical flow field. The proposed segmentation algorithm contains a single image depth estimation part for predicting the expected optical flow field. The comparison method of the two flow fields is also presented in this paper. The proposed method has been evaluated both qualitatively and quantitatively using the KITTI vision dataset, and achieved a filtering error of 7…12% compared to manually prepared ground truth images.","PeriodicalId":297342,"journal":{"name":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion Based Masking of a Moving Vehicle's Environment\",\"authors\":\"Tamás Mészégető, Benedek Tass, M. Szántó\",\"doi\":\"10.1109/ICCAIRO47923.2019.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of autonomous vehicle navigation requires the use of high-definition and well-maintained maps. Such a map can be constructed using the method developed for the so-called CrowdMapping architecture. This paper proposes a method for constructing masks for such map creation purposes via segmenting dynamic and static regions of an image sequence. The segmentation is performed by comparing a calculated and a predicted optical flow field. The proposed segmentation algorithm contains a single image depth estimation part for predicting the expected optical flow field. The comparison method of the two flow fields is also presented in this paper. The proposed method has been evaluated both qualitatively and quantitatively using the KITTI vision dataset, and achieved a filtering error of 7…12% compared to manually prepared ground truth images.\",\"PeriodicalId\":297342,\"journal\":{\"name\":\"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIRO47923.2019.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIRO47923.2019.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车导航的问题需要使用高清和维护良好的地图。这种地图可以使用为所谓的“众图”架构开发的方法来构建。本文提出了一种通过分割图像序列的动态和静态区域来构建这种地图创建目的的掩模的方法。通过比较计算光流场和预测光流场来进行分割。该分割算法包含一个图像深度估计部分,用于预测期望的光流场。本文还提出了两种流场的比较方法。利用KITTI视觉数据集对该方法进行了定性和定量评估,与人工制备的地面真实图像相比,该方法的滤波误差为7…12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Based Masking of a Moving Vehicle's Environment
The problem of autonomous vehicle navigation requires the use of high-definition and well-maintained maps. Such a map can be constructed using the method developed for the so-called CrowdMapping architecture. This paper proposes a method for constructing masks for such map creation purposes via segmenting dynamic and static regions of an image sequence. The segmentation is performed by comparing a calculated and a predicted optical flow field. The proposed segmentation algorithm contains a single image depth estimation part for predicting the expected optical flow field. The comparison method of the two flow fields is also presented in this paper. The proposed method has been evaluated both qualitatively and quantitatively using the KITTI vision dataset, and achieved a filtering error of 7…12% compared to manually prepared ground truth images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信