Mehran Alavi, M. Hamblin, M. Mozafari, Irwin Rose Alencar de Menezes, Henrique Douglas Melo Coutinho
{"title":"用于血液制品细菌净化的二氧化硅纳米颗粒表面改性","authors":"Mehran Alavi, M. Hamblin, M. Mozafari, Irwin Rose Alencar de Menezes, Henrique Douglas Melo Coutinho","doi":"10.55705/cmbr.2022.338888.1039","DOIUrl":null,"url":null,"abstract":"Bacterial infections can be caused by contamination of labile blood products with specific bacteria, such as Staphylococcus aureus and Staphylococcus epidermidis . Hospital equipment, bio-protective equipment, delivery systems, and medical devices can be easily contaminated by microorganisms. Multidrug-resistant bacteria can survive on various organic or inorganic polymeric materials for more than 90 days. Inhibiting the growth and eradicating these microorganisms is vital in blood transfusion processes. Blood bags and other related medical devices can be improved by the incorporation of organic or inorganic nanomaterials, particularly silicon dioxide (SiO 2 ) nanoparticles. The addition of solid organic or inorganic nanoparticles to synthetic polymers or biopolymers can provide new properties in addition to antimicrobial activity. Among these NPs, formulations composed of SiO 2 nanoparticles and polymers have been shown to improve the mechanical and antimicrobial properties of catheters, prosthetic inserts, blood bags, and other medical devices SiO 2 nanoparticles possess several advantages, including large-scale synthetic availability, simple one-pot synthesis methods, porous structure for loading antibacterial agents, good biocompatibility, and thermal stability. Plasticized polyvinyl chloride is the main polymer, which has been functionalized by these nanoparticles. In this review, we discuss the recent advances and challenges regarding the functionalization of polyvinyl chloride by SiO 2 nanoparticles to hinder bacterial contaminations in blood products.","PeriodicalId":304796,"journal":{"name":"Cellular, Molecular and Biomedical Reports","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products\",\"authors\":\"Mehran Alavi, M. Hamblin, M. Mozafari, Irwin Rose Alencar de Menezes, Henrique Douglas Melo Coutinho\",\"doi\":\"10.55705/cmbr.2022.338888.1039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial infections can be caused by contamination of labile blood products with specific bacteria, such as Staphylococcus aureus and Staphylococcus epidermidis . Hospital equipment, bio-protective equipment, delivery systems, and medical devices can be easily contaminated by microorganisms. Multidrug-resistant bacteria can survive on various organic or inorganic polymeric materials for more than 90 days. Inhibiting the growth and eradicating these microorganisms is vital in blood transfusion processes. Blood bags and other related medical devices can be improved by the incorporation of organic or inorganic nanomaterials, particularly silicon dioxide (SiO 2 ) nanoparticles. The addition of solid organic or inorganic nanoparticles to synthetic polymers or biopolymers can provide new properties in addition to antimicrobial activity. Among these NPs, formulations composed of SiO 2 nanoparticles and polymers have been shown to improve the mechanical and antimicrobial properties of catheters, prosthetic inserts, blood bags, and other medical devices SiO 2 nanoparticles possess several advantages, including large-scale synthetic availability, simple one-pot synthesis methods, porous structure for loading antibacterial agents, good biocompatibility, and thermal stability. Plasticized polyvinyl chloride is the main polymer, which has been functionalized by these nanoparticles. In this review, we discuss the recent advances and challenges regarding the functionalization of polyvinyl chloride by SiO 2 nanoparticles to hinder bacterial contaminations in blood products.\",\"PeriodicalId\":304796,\"journal\":{\"name\":\"Cellular, Molecular and Biomedical Reports\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular, Molecular and Biomedical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55705/cmbr.2022.338888.1039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular, Molecular and Biomedical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55705/cmbr.2022.338888.1039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface modification of SiO2 nanoparticles for bacterial decontaminations of blood products
Bacterial infections can be caused by contamination of labile blood products with specific bacteria, such as Staphylococcus aureus and Staphylococcus epidermidis . Hospital equipment, bio-protective equipment, delivery systems, and medical devices can be easily contaminated by microorganisms. Multidrug-resistant bacteria can survive on various organic or inorganic polymeric materials for more than 90 days. Inhibiting the growth and eradicating these microorganisms is vital in blood transfusion processes. Blood bags and other related medical devices can be improved by the incorporation of organic or inorganic nanomaterials, particularly silicon dioxide (SiO 2 ) nanoparticles. The addition of solid organic or inorganic nanoparticles to synthetic polymers or biopolymers can provide new properties in addition to antimicrobial activity. Among these NPs, formulations composed of SiO 2 nanoparticles and polymers have been shown to improve the mechanical and antimicrobial properties of catheters, prosthetic inserts, blood bags, and other medical devices SiO 2 nanoparticles possess several advantages, including large-scale synthetic availability, simple one-pot synthesis methods, porous structure for loading antibacterial agents, good biocompatibility, and thermal stability. Plasticized polyvinyl chloride is the main polymer, which has been functionalized by these nanoparticles. In this review, we discuss the recent advances and challenges regarding the functionalization of polyvinyl chloride by SiO 2 nanoparticles to hinder bacterial contaminations in blood products.