推特情绪分析:好的,坏的,OMG!

Efthymios Kouloumpis, Theresa Wilson, Johanna D. Moore
{"title":"推特情绪分析:好的,坏的,OMG!","authors":"Efthymios Kouloumpis, Theresa Wilson, Johanna D. Moore","doi":"10.1609/icwsm.v5i1.14185","DOIUrl":null,"url":null,"abstract":"\n \n In this paper, we investigate the utility of linguistic features for detecting the sentiment of Twitter messages. We evaluate the usefulness of existing lexical resources as well as features that capture information about the informal and creative language used in microblogging. We take a supervied approach to the problem, but leverage existing hashtags in the Twitter data for building training data.\n \n","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1332","resultStr":"{\"title\":\"Twitter Sentiment Analysis: The Good the Bad and the OMG!\",\"authors\":\"Efthymios Kouloumpis, Theresa Wilson, Johanna D. Moore\",\"doi\":\"10.1609/icwsm.v5i1.14185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n In this paper, we investigate the utility of linguistic features for detecting the sentiment of Twitter messages. We evaluate the usefulness of existing lexical resources as well as features that capture information about the informal and creative language used in microblogging. We take a supervied approach to the problem, but leverage existing hashtags in the Twitter data for building training data.\\n \\n\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1332\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v5i1.14185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v5i1.14185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1332

摘要

在本文中,我们研究了语言特征在Twitter消息情感检测中的效用。我们评估了现有词汇资源的有用性,以及捕捉微博中使用的非正式和创造性语言信息的功能。我们采用监督的方法来解决这个问题,但利用Twitter数据中的现有标签来构建训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twitter Sentiment Analysis: The Good the Bad and the OMG!
In this paper, we investigate the utility of linguistic features for detecting the sentiment of Twitter messages. We evaluate the usefulness of existing lexical resources as well as features that capture information about the informal and creative language used in microblogging. We take a supervied approach to the problem, but leverage existing hashtags in the Twitter data for building training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信