基于卷积神经网络和音频特征结合的多模态视频概念分类

Berkay Selbes, M. Sert
{"title":"基于卷积神经网络和音频特征结合的多模态视频概念分类","authors":"Berkay Selbes, M. Sert","doi":"10.1109/SIU.2017.7960723","DOIUrl":null,"url":null,"abstract":"Video concept classification is a very important task for several applications such as content based video indexing and searching. In this study, we propose a multi-modal video classification method based on the feature-level fusion of audio-visual signals. In the proposed method, we extract Mel Frequency Cepstral Coefficient (MFCC) and convolutional neural network (CNN) features from the audio and visual parts of the video signal, respectively and calculate three statistical representations of the MFCC feature vectors. We perform feature level fusion of both modalities using the concatenation operator and train Support Vector Machine (SVM) classifiers using these multimodal features. We evaluate the effectiveness of our proposed method on the TRECVID video performance dataset for both single- and multi-modal cases. Our results show that, fusing standard deviation representation of the audio modality along with the GoogleNet CNN features improves the classification accuracy.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multimodal video concept classification based on convolutional neural network and audio feature combination\",\"authors\":\"Berkay Selbes, M. Sert\",\"doi\":\"10.1109/SIU.2017.7960723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video concept classification is a very important task for several applications such as content based video indexing and searching. In this study, we propose a multi-modal video classification method based on the feature-level fusion of audio-visual signals. In the proposed method, we extract Mel Frequency Cepstral Coefficient (MFCC) and convolutional neural network (CNN) features from the audio and visual parts of the video signal, respectively and calculate three statistical representations of the MFCC feature vectors. We perform feature level fusion of both modalities using the concatenation operator and train Support Vector Machine (SVM) classifiers using these multimodal features. We evaluate the effectiveness of our proposed method on the TRECVID video performance dataset for both single- and multi-modal cases. Our results show that, fusing standard deviation representation of the audio modality along with the GoogleNet CNN features improves the classification accuracy.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

视频概念分类对于基于内容的视频索引和搜索等应用来说是一项非常重要的任务。在本研究中,我们提出了一种基于特征级视听信号融合的多模态视频分类方法。在该方法中,我们分别从视频信号的音频和视觉部分提取Mel频率倒谱系数(MFCC)和卷积神经网络(CNN)特征,并计算MFCC特征向量的三种统计表示。我们使用连接算子对两种模式进行特征级融合,并使用这些多模式特征训练支持向量机(SVM)分类器。我们在TRECVID视频性能数据集上评估了我们提出的方法在单模式和多模式情况下的有效性。我们的研究结果表明,将音频模态的标准差表示与GoogleNet CNN特征融合可以提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal video concept classification based on convolutional neural network and audio feature combination
Video concept classification is a very important task for several applications such as content based video indexing and searching. In this study, we propose a multi-modal video classification method based on the feature-level fusion of audio-visual signals. In the proposed method, we extract Mel Frequency Cepstral Coefficient (MFCC) and convolutional neural network (CNN) features from the audio and visual parts of the video signal, respectively and calculate three statistical representations of the MFCC feature vectors. We perform feature level fusion of both modalities using the concatenation operator and train Support Vector Machine (SVM) classifiers using these multimodal features. We evaluate the effectiveness of our proposed method on the TRECVID video performance dataset for both single- and multi-modal cases. Our results show that, fusing standard deviation representation of the audio modality along with the GoogleNet CNN features improves the classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信