限时随机存取机

S. Cook, R. Reckhow
{"title":"限时随机存取机","authors":"S. Cook, R. Reckhow","doi":"10.1145/800152.804898","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a formal model for random access computers and argue that the model is a good one to use in the theory of computational complexity. Results are proved which compare run times for recognizing sets using this model (which has a fixed program) with a stored program model and with Turing machines. The main result, theorem 3, shows the existence of a time complexity hierarchy which is finer than that of any standard abstract computer model. An Algol-like programming language is introduced which facilitates proofs of the theorems.","PeriodicalId":229726,"journal":{"name":"Proceedings of the fourth annual ACM symposium on Theory of computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1972-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"270","resultStr":"{\"title\":\"Time-bounded random access machines\",\"authors\":\"S. Cook, R. Reckhow\",\"doi\":\"10.1145/800152.804898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a formal model for random access computers and argue that the model is a good one to use in the theory of computational complexity. Results are proved which compare run times for recognizing sets using this model (which has a fixed program) with a stored program model and with Turing machines. The main result, theorem 3, shows the existence of a time complexity hierarchy which is finer than that of any standard abstract computer model. An Algol-like programming language is introduced which facilitates proofs of the theorems.\",\"PeriodicalId\":229726,\"journal\":{\"name\":\"Proceedings of the fourth annual ACM symposium on Theory of computing\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1972-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"270\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fourth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800152.804898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fourth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800152.804898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 270

摘要

本文介绍了随机存取计算机的一个形式化模型,并论证了该模型在计算复杂性理论中的应用。结果证明了使用该模型(具有固定程序)与存储程序模型和图灵机识别集的运行时间的比较。主要的结果,定理3,表明了时间复杂度层次的存在,它比任何标准的抽象计算机模型都要精细。引入了一种类似algol的编程语言,方便了定理的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-bounded random access machines
In this paper we introduce a formal model for random access computers and argue that the model is a good one to use in the theory of computational complexity. Results are proved which compare run times for recognizing sets using this model (which has a fixed program) with a stored program model and with Turing machines. The main result, theorem 3, shows the existence of a time complexity hierarchy which is finer than that of any standard abstract computer model. An Algol-like programming language is introduced which facilitates proofs of the theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信