一个差分私有图估计

Darakhshan J. Mir, R. Wright
{"title":"一个差分私有图估计","authors":"Darakhshan J. Mir, R. Wright","doi":"10.1109/ICDMW.2009.96","DOIUrl":null,"url":null,"abstract":"We consider the problem of making graph databases such as social network structures available to researchers for knowledge discovery while providing privacy to the participating entities. We show that for a specific parametric graph model, the Kronecker graph model, one can construct an estimator of the true parameter in a way that both satisfies the rigorous requirements of differential privacy and is asymptotically efficient in the statistical sense. The estimator, which may then be published, defines a probability distribution on graphs. Sampling such a distribution yields a synthetic graph that mimics important properties of the original sensitive graph and, consequently, could be useful for knowledge discovery.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"A Differentially Private Graph Estimator\",\"authors\":\"Darakhshan J. Mir, R. Wright\",\"doi\":\"10.1109/ICDMW.2009.96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of making graph databases such as social network structures available to researchers for knowledge discovery while providing privacy to the participating entities. We show that for a specific parametric graph model, the Kronecker graph model, one can construct an estimator of the true parameter in a way that both satisfies the rigorous requirements of differential privacy and is asymptotically efficient in the statistical sense. The estimator, which may then be published, defines a probability distribution on graphs. Sampling such a distribution yields a synthetic graph that mimics important properties of the original sensitive graph and, consequently, could be useful for knowledge discovery.\",\"PeriodicalId\":351078,\"journal\":{\"name\":\"2009 IEEE International Conference on Data Mining Workshops\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2009.96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

我们考虑的问题是使图形数据库(如社会网络结构)可供研究人员用于知识发现,同时为参与实体提供隐私。我们证明了对于一个特定的参数图模型,即Kronecker图模型,我们可以构造一个既满足微分隐私的严格要求又在统计意义上是渐近有效的真参数估计量。估计量定义了图上的概率分布。对这样的分布进行采样,生成一个模拟原始敏感图的重要属性的合成图,因此,可能对知识发现有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Differentially Private Graph Estimator
We consider the problem of making graph databases such as social network structures available to researchers for knowledge discovery while providing privacy to the participating entities. We show that for a specific parametric graph model, the Kronecker graph model, one can construct an estimator of the true parameter in a way that both satisfies the rigorous requirements of differential privacy and is asymptotically efficient in the statistical sense. The estimator, which may then be published, defines a probability distribution on graphs. Sampling such a distribution yields a synthetic graph that mimics important properties of the original sensitive graph and, consequently, could be useful for knowledge discovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信