激发高性能无服务器工作负载

H. Nguyen, Zhifei Yang, A. Chien
{"title":"激发高性能无服务器工作负载","authors":"H. Nguyen, Zhifei Yang, A. Chien","doi":"10.1145/3452413.3464786","DOIUrl":null,"url":null,"abstract":"The historical motivation for serverless comes from internet-of-things, smartphone client server, and the objective of simplifying programming (no provisioning) and scale-down (pay-for-use). These applications are generally low-performance best-effort. However, the serverless model enables flexible software architectures suitable for a wide range of applications that demand high-performance and guaranteed performance. We have studied three such applications - scientific data streaming, virtual/augmented reality, and document annotation. We describe how each can be cast in a serverless software architecture and how the application performance requirements translate into high performance requirements (invocation rate, low and predictable latency) for the underlying serverless system implementation. These applications can require invocations rates as high as millions per second (40 MHz) and latency deadlines below a microsecond (300 ns), and furthermore require performance predictability. All of these capabilities are far in excess of today's commercial serverless offerings and represent interesting research challenges.","PeriodicalId":339058,"journal":{"name":"Proceedings of the 1st Workshop on High Performance Serverless Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Motivating High Performance Serverless Workloads\",\"authors\":\"H. Nguyen, Zhifei Yang, A. Chien\",\"doi\":\"10.1145/3452413.3464786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The historical motivation for serverless comes from internet-of-things, smartphone client server, and the objective of simplifying programming (no provisioning) and scale-down (pay-for-use). These applications are generally low-performance best-effort. However, the serverless model enables flexible software architectures suitable for a wide range of applications that demand high-performance and guaranteed performance. We have studied three such applications - scientific data streaming, virtual/augmented reality, and document annotation. We describe how each can be cast in a serverless software architecture and how the application performance requirements translate into high performance requirements (invocation rate, low and predictable latency) for the underlying serverless system implementation. These applications can require invocations rates as high as millions per second (40 MHz) and latency deadlines below a microsecond (300 ns), and furthermore require performance predictability. All of these capabilities are far in excess of today's commercial serverless offerings and represent interesting research challenges.\",\"PeriodicalId\":339058,\"journal\":{\"name\":\"Proceedings of the 1st Workshop on High Performance Serverless Computing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st Workshop on High Performance Serverless Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452413.3464786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop on High Performance Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452413.3464786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

无服务器的历史动机来自物联网、智能手机客户端服务器,以及简化编程(无需供应)和缩减规模(按使用付费)的目标。这些应用程序通常是低性能的。然而,无服务器模型支持灵活的软件架构,适用于需要高性能和有保证的性能的广泛应用程序。我们研究了三个这样的应用——科学数据流、虚拟/增强现实和文档注释。我们描述了如何在无服务器软件体系结构中转换它们,以及如何将应用程序性能需求转换为底层无服务器系统实现的高性能需求(调用率、低且可预测的延迟)。这些应用程序可能需要高达每秒百万次(40 MHz)的调用速率和低于1微秒(300 ns)的延迟截止时间,而且还需要性能可预测性。所有这些功能都远远超过了今天的商业无服务器产品,并代表了有趣的研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motivating High Performance Serverless Workloads
The historical motivation for serverless comes from internet-of-things, smartphone client server, and the objective of simplifying programming (no provisioning) and scale-down (pay-for-use). These applications are generally low-performance best-effort. However, the serverless model enables flexible software architectures suitable for a wide range of applications that demand high-performance and guaranteed performance. We have studied three such applications - scientific data streaming, virtual/augmented reality, and document annotation. We describe how each can be cast in a serverless software architecture and how the application performance requirements translate into high performance requirements (invocation rate, low and predictable latency) for the underlying serverless system implementation. These applications can require invocations rates as high as millions per second (40 MHz) and latency deadlines below a microsecond (300 ns), and furthermore require performance predictability. All of these capabilities are far in excess of today's commercial serverless offerings and represent interesting research challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信