从社交媒体预测时间敏感的用户位置

A. Jaiswal, Wei Peng, Tong Sun
{"title":"从社交媒体预测时间敏感的用户位置","authors":"A. Jaiswal, Wei Peng, Tong Sun","doi":"10.1145/2492517.2500229","DOIUrl":null,"url":null,"abstract":"Access to massive real-time user generated personal information from micro blogging services, such as Twitter and Facebook, has the potential to enable new location-based recommendation and advertising services. However, sparse user profile information and low adoption of per-message geo-coordinate information necessitates development of location detection techniques that exposes a user's location from message content. We propose and evaluate content-based machine learning techniques to a) identify tweets containing a user's location, and, b) categorize a user location into the author's present or future location. Such an approach is advantageous because it a) relies purely on message content, b) can be used to predict a user's future presence at a location, c) relates user locations to some context (activities, trip plans, etc.), and, d) can be used to profile users constantly evolving location. Our experimental evaluation shows that the proposed techniques can identify and categorize user locations from message content with high accuracy. We also extract the time entities associated with a user's future location to show when the user would be at that location. Finally we illustrate the location-based data analytics potential of these techniques on two real-world datasets.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Predicting time-sensitive user locations from social media\",\"authors\":\"A. Jaiswal, Wei Peng, Tong Sun\",\"doi\":\"10.1145/2492517.2500229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Access to massive real-time user generated personal information from micro blogging services, such as Twitter and Facebook, has the potential to enable new location-based recommendation and advertising services. However, sparse user profile information and low adoption of per-message geo-coordinate information necessitates development of location detection techniques that exposes a user's location from message content. We propose and evaluate content-based machine learning techniques to a) identify tweets containing a user's location, and, b) categorize a user location into the author's present or future location. Such an approach is advantageous because it a) relies purely on message content, b) can be used to predict a user's future presence at a location, c) relates user locations to some context (activities, trip plans, etc.), and, d) can be used to profile users constantly evolving location. Our experimental evaluation shows that the proposed techniques can identify and categorize user locations from message content with high accuracy. We also extract the time entities associated with a user's future location to show when the user would be at that location. Finally we illustrate the location-based data analytics potential of these techniques on two real-world datasets.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2500229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2500229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

从Twitter和Facebook等微博服务中获取大量实时用户生成的个人信息,有可能催生新的基于位置的推荐和广告服务。然而,稀疏的用户概要信息和对每条消息地理坐标信息的低采用率需要开发从消息内容中暴露用户位置的位置检测技术。我们提出并评估了基于内容的机器学习技术,以a)识别包含用户位置的推文,以及b)将用户位置分类为作者现在或未来的位置。这种方法是有利的,因为它a)完全依赖于消息内容,b)可用于预测用户未来在某个位置的存在,c)将用户位置与某些上下文(活动、旅行计划等)联系起来,并且d)可用于描述用户不断变化的位置。实验结果表明,该方法能够较准确地从消息内容中识别和分类用户位置。我们还提取与用户未来位置相关的时间实体,以显示用户将在该位置的时间。最后,我们说明了这些技术在两个现实世界数据集上基于位置的数据分析的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting time-sensitive user locations from social media
Access to massive real-time user generated personal information from micro blogging services, such as Twitter and Facebook, has the potential to enable new location-based recommendation and advertising services. However, sparse user profile information and low adoption of per-message geo-coordinate information necessitates development of location detection techniques that exposes a user's location from message content. We propose and evaluate content-based machine learning techniques to a) identify tweets containing a user's location, and, b) categorize a user location into the author's present or future location. Such an approach is advantageous because it a) relies purely on message content, b) can be used to predict a user's future presence at a location, c) relates user locations to some context (activities, trip plans, etc.), and, d) can be used to profile users constantly evolving location. Our experimental evaluation shows that the proposed techniques can identify and categorize user locations from message content with high accuracy. We also extract the time entities associated with a user's future location to show when the user would be at that location. Finally we illustrate the location-based data analytics potential of these techniques on two real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信