基于视觉变换的视网膜血管分割与深度自适应伽玛校正

Hyunwoo Yu, J. Shim, Jaeho Kwak, J. Song, Suk-Ju Kang
{"title":"基于视觉变换的视网膜血管分割与深度自适应伽玛校正","authors":"Hyunwoo Yu, J. Shim, Jaeho Kwak, J. Song, Suk-Ju Kang","doi":"10.1109/icassp43922.2022.9747597","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of the retina vessel is essential for the early diagnosis of eye-related diseases. Recently, convolutional neural networks have shown remarkable performance in retina vessel segmentation. However, the complexity of edge structural information and the changeable intensity distribution depending on retina images reduce the performance of the segmentation tasks. This paper proposes two novel deep learning-based modules, channel attention vision transformer (CAViT) and deep adaptive gamma correction (DAGC), to tackle these issues. The CAViT jointly applies the efficient channel attention (ECA) and the vision transformer (ViT), in which the channel attention module considers the interdependency among feature channels and the ViT discriminates meaningful edge structures by considering the global context. The DAGC module provides the optimal gamma correction value for each input image by jointly training a CNN model with the segmentation network so that all the retina images are mapped to a unified intensity distribution. The experimental results show that our proposed method achieves superior performance compared to conventional methods on widely used datasets, DRIVE and CHASE DB1.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vision Transformer-Based Retina Vessel Segmentation with Deep Adaptive Gamma Correction\",\"authors\":\"Hyunwoo Yu, J. Shim, Jaeho Kwak, J. Song, Suk-Ju Kang\",\"doi\":\"10.1109/icassp43922.2022.9747597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of the retina vessel is essential for the early diagnosis of eye-related diseases. Recently, convolutional neural networks have shown remarkable performance in retina vessel segmentation. However, the complexity of edge structural information and the changeable intensity distribution depending on retina images reduce the performance of the segmentation tasks. This paper proposes two novel deep learning-based modules, channel attention vision transformer (CAViT) and deep adaptive gamma correction (DAGC), to tackle these issues. The CAViT jointly applies the efficient channel attention (ECA) and the vision transformer (ViT), in which the channel attention module considers the interdependency among feature channels and the ViT discriminates meaningful edge structures by considering the global context. The DAGC module provides the optimal gamma correction value for each input image by jointly training a CNN model with the segmentation network so that all the retina images are mapped to a unified intensity distribution. The experimental results show that our proposed method achieves superior performance compared to conventional methods on widely used datasets, DRIVE and CHASE DB1.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

视网膜血管的准确分割对于眼部相关疾病的早期诊断至关重要。近年来,卷积神经网络在视网膜血管分割中表现出了显著的效果。然而,边缘结构信息的复杂性和视网膜图像强度分布的变化降低了分割任务的性能。为了解决这些问题,本文提出了两个新的基于深度学习的模块——通道注意视觉转换器(CAViT)和深度自适应伽马校正(DAGC)。该算法将有效通道注意(ECA)和视觉转换(ViT)相结合,其中通道注意模块考虑特征通道之间的相互依赖性,而视觉转换模块通过考虑全局上下文来判别有意义的边缘结构。DAGC模块通过与分割网络联合训练CNN模型,为每个输入图像提供最优的伽马校正值,使所有视网膜图像映射到统一的强度分布。实验结果表明,在广泛使用的数据集(DRIVE和CHASE DB1)上,与传统方法相比,本文提出的方法取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vision Transformer-Based Retina Vessel Segmentation with Deep Adaptive Gamma Correction
Accurate segmentation of the retina vessel is essential for the early diagnosis of eye-related diseases. Recently, convolutional neural networks have shown remarkable performance in retina vessel segmentation. However, the complexity of edge structural information and the changeable intensity distribution depending on retina images reduce the performance of the segmentation tasks. This paper proposes two novel deep learning-based modules, channel attention vision transformer (CAViT) and deep adaptive gamma correction (DAGC), to tackle these issues. The CAViT jointly applies the efficient channel attention (ECA) and the vision transformer (ViT), in which the channel attention module considers the interdependency among feature channels and the ViT discriminates meaningful edge structures by considering the global context. The DAGC module provides the optimal gamma correction value for each input image by jointly training a CNN model with the segmentation network so that all the retina images are mapped to a unified intensity distribution. The experimental results show that our proposed method achieves superior performance compared to conventional methods on widely used datasets, DRIVE and CHASE DB1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信