Hyunwoo Yu, J. Shim, Jaeho Kwak, J. Song, Suk-Ju Kang
{"title":"基于视觉变换的视网膜血管分割与深度自适应伽玛校正","authors":"Hyunwoo Yu, J. Shim, Jaeho Kwak, J. Song, Suk-Ju Kang","doi":"10.1109/icassp43922.2022.9747597","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of the retina vessel is essential for the early diagnosis of eye-related diseases. Recently, convolutional neural networks have shown remarkable performance in retina vessel segmentation. However, the complexity of edge structural information and the changeable intensity distribution depending on retina images reduce the performance of the segmentation tasks. This paper proposes two novel deep learning-based modules, channel attention vision transformer (CAViT) and deep adaptive gamma correction (DAGC), to tackle these issues. The CAViT jointly applies the efficient channel attention (ECA) and the vision transformer (ViT), in which the channel attention module considers the interdependency among feature channels and the ViT discriminates meaningful edge structures by considering the global context. The DAGC module provides the optimal gamma correction value for each input image by jointly training a CNN model with the segmentation network so that all the retina images are mapped to a unified intensity distribution. The experimental results show that our proposed method achieves superior performance compared to conventional methods on widely used datasets, DRIVE and CHASE DB1.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Vision Transformer-Based Retina Vessel Segmentation with Deep Adaptive Gamma Correction\",\"authors\":\"Hyunwoo Yu, J. Shim, Jaeho Kwak, J. Song, Suk-Ju Kang\",\"doi\":\"10.1109/icassp43922.2022.9747597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate segmentation of the retina vessel is essential for the early diagnosis of eye-related diseases. Recently, convolutional neural networks have shown remarkable performance in retina vessel segmentation. However, the complexity of edge structural information and the changeable intensity distribution depending on retina images reduce the performance of the segmentation tasks. This paper proposes two novel deep learning-based modules, channel attention vision transformer (CAViT) and deep adaptive gamma correction (DAGC), to tackle these issues. The CAViT jointly applies the efficient channel attention (ECA) and the vision transformer (ViT), in which the channel attention module considers the interdependency among feature channels and the ViT discriminates meaningful edge structures by considering the global context. The DAGC module provides the optimal gamma correction value for each input image by jointly training a CNN model with the segmentation network so that all the retina images are mapped to a unified intensity distribution. The experimental results show that our proposed method achieves superior performance compared to conventional methods on widely used datasets, DRIVE and CHASE DB1.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Vision Transformer-Based Retina Vessel Segmentation with Deep Adaptive Gamma Correction
Accurate segmentation of the retina vessel is essential for the early diagnosis of eye-related diseases. Recently, convolutional neural networks have shown remarkable performance in retina vessel segmentation. However, the complexity of edge structural information and the changeable intensity distribution depending on retina images reduce the performance of the segmentation tasks. This paper proposes two novel deep learning-based modules, channel attention vision transformer (CAViT) and deep adaptive gamma correction (DAGC), to tackle these issues. The CAViT jointly applies the efficient channel attention (ECA) and the vision transformer (ViT), in which the channel attention module considers the interdependency among feature channels and the ViT discriminates meaningful edge structures by considering the global context. The DAGC module provides the optimal gamma correction value for each input image by jointly training a CNN model with the segmentation network so that all the retina images are mapped to a unified intensity distribution. The experimental results show that our proposed method achieves superior performance compared to conventional methods on widely used datasets, DRIVE and CHASE DB1.