判别公向量法在单样本问题中的应用

Mehmet Koç, A. Barkana
{"title":"判别公向量法在单样本问题中的应用","authors":"Mehmet Koç, A. Barkana","doi":"10.1109/SIU.2012.6204536","DOIUrl":null,"url":null,"abstract":"Matrix-based (2D) methods have advantages over vector-based (1D) methods. Matrix-based methods generally have less computational costs and higher recognition performances with respect to vector-based variants. In this work a two dimensional variation of Discriminative Common Vector Approach (2D-DCVA) is implemented. The performance of the method in single image problem is compared with the one dimensional Discriminative Common Vector Approach (1D-DCVA) and the two dimensional Fisher Linear Discriminant Analysis (2D-FLDA) on ORL, FERET, and YALE face databases. The best recognition performances are achieved in all databases with the proposed method.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of the Discriminative Common Vector Approach to one sample problem\",\"authors\":\"Mehmet Koç, A. Barkana\",\"doi\":\"10.1109/SIU.2012.6204536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix-based (2D) methods have advantages over vector-based (1D) methods. Matrix-based methods generally have less computational costs and higher recognition performances with respect to vector-based variants. In this work a two dimensional variation of Discriminative Common Vector Approach (2D-DCVA) is implemented. The performance of the method in single image problem is compared with the one dimensional Discriminative Common Vector Approach (1D-DCVA) and the two dimensional Fisher Linear Discriminant Analysis (2D-FLDA) on ORL, FERET, and YALE face databases. The best recognition performances are achieved in all databases with the proposed method.\",\"PeriodicalId\":256154,\"journal\":{\"name\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2012.6204536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于矩阵(2D)的方法比基于向量(1D)的方法有优势。相对于基于向量的变体,基于矩阵的方法通常具有更少的计算成本和更高的识别性能。本文实现了一种二维变异的判别共向量法(2D-DCVA)。在ORL、FERET和YALE人脸数据库上,将该方法与一维判别公共向量法(1D-DCVA)和二维Fisher线性判别分析法(2D-FLDA)在单幅图像问题上的性能进行了比较。该方法在所有数据库中均取得了较好的识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Discriminative Common Vector Approach to one sample problem
Matrix-based (2D) methods have advantages over vector-based (1D) methods. Matrix-based methods generally have less computational costs and higher recognition performances with respect to vector-based variants. In this work a two dimensional variation of Discriminative Common Vector Approach (2D-DCVA) is implemented. The performance of the method in single image problem is compared with the one dimensional Discriminative Common Vector Approach (1D-DCVA) and the two dimensional Fisher Linear Discriminant Analysis (2D-FLDA) on ORL, FERET, and YALE face databases. The best recognition performances are achieved in all databases with the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信