在大型社会网络中检测社区核

Liaoruo Wang, Tiancheng Lou, Jie Tang, J. Hopcroft
{"title":"在大型社会网络中检测社区核","authors":"Liaoruo Wang, Tiancheng Lou, Jie Tang, J. Hopcroft","doi":"10.1109/ICDM.2011.48","DOIUrl":null,"url":null,"abstract":"In many social networks, there exist two types of users that exhibit different influence and different behavior. For instance, statistics have shown that less than 1% of the Twitter users (e.g. entertainers, politicians, writers) produce 50% of its content, while the others (e.g. fans, followers, readers) have much less influence and completely different social behavior. In this paper, we define and explore a novel problem called community kernel detection in order to uncover the hidden community structure in large social networks. We discover that influential users pay closer attention to those who are more similar to them, which leads to a natural partition into different community kernels. We propose Greedy and We BA, two efficient algorithms for finding community kernels in large social networks. Greedy is based on maximum cardinality search, while We BA formalizes the problem in an optimization framework. We conduct experiments on three large social networks: Twitter, Wikipedia, and Coauthor, which show that We BA achieves an average 15%-50% performance improvement over the other state-of-the-art algorithms, and We BA is on average 6-2,000 times faster in detecting community kernels.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Detecting Community Kernels in Large Social Networks\",\"authors\":\"Liaoruo Wang, Tiancheng Lou, Jie Tang, J. Hopcroft\",\"doi\":\"10.1109/ICDM.2011.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many social networks, there exist two types of users that exhibit different influence and different behavior. For instance, statistics have shown that less than 1% of the Twitter users (e.g. entertainers, politicians, writers) produce 50% of its content, while the others (e.g. fans, followers, readers) have much less influence and completely different social behavior. In this paper, we define and explore a novel problem called community kernel detection in order to uncover the hidden community structure in large social networks. We discover that influential users pay closer attention to those who are more similar to them, which leads to a natural partition into different community kernels. We propose Greedy and We BA, two efficient algorithms for finding community kernels in large social networks. Greedy is based on maximum cardinality search, while We BA formalizes the problem in an optimization framework. We conduct experiments on three large social networks: Twitter, Wikipedia, and Coauthor, which show that We BA achieves an average 15%-50% performance improvement over the other state-of-the-art algorithms, and We BA is on average 6-2,000 times faster in detecting community kernels.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

在许多社交网络中,存在两类用户,它们表现出不同的影响力和不同的行为。例如,统计数据显示,不到1%的Twitter用户(如演艺人员、政治家、作家)制作了50%的内容,而其他人(如粉丝、追随者、读者)的影响力要小得多,而且社会行为完全不同。为了揭示大型社交网络中隐藏的社区结构,我们定义并探索了一个名为社区核检测的新问题。我们发现,有影响力的用户更关注那些与他们更相似的人,这导致了自然划分到不同的社区内核。我们提出了Greedy和We BA这两种在大型社交网络中寻找社区核的有效算法。贪婪是基于最大基数搜索,而我们BA在优化框架中形式化的问题。我们在三个大型社交网络上进行了实验:Twitter、Wikipedia和Coauthor,结果表明,We BA比其他最先进的算法平均提高了15%-50%的性能,并且We BA在检测社区内核方面平均快了6- 2000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Community Kernels in Large Social Networks
In many social networks, there exist two types of users that exhibit different influence and different behavior. For instance, statistics have shown that less than 1% of the Twitter users (e.g. entertainers, politicians, writers) produce 50% of its content, while the others (e.g. fans, followers, readers) have much less influence and completely different social behavior. In this paper, we define and explore a novel problem called community kernel detection in order to uncover the hidden community structure in large social networks. We discover that influential users pay closer attention to those who are more similar to them, which leads to a natural partition into different community kernels. We propose Greedy and We BA, two efficient algorithms for finding community kernels in large social networks. Greedy is based on maximum cardinality search, while We BA formalizes the problem in an optimization framework. We conduct experiments on three large social networks: Twitter, Wikipedia, and Coauthor, which show that We BA achieves an average 15%-50% performance improvement over the other state-of-the-art algorithms, and We BA is on average 6-2,000 times faster in detecting community kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信