凸分区上分段常数对两次连续可微函数逼近饱和阶的较低估计

O. Kozynenko
{"title":"凸分区上分段常数对两次连续可微函数逼近饱和阶的较低估计","authors":"O. Kozynenko","doi":"10.15421/241805","DOIUrl":null,"url":null,"abstract":"We consider the problem of approximation order of twice continuously differentiable functions of many variables by piecewise constants. We show that the saturation order of piecewise constant approximation in $$$L_p$$$ norm on convex partitions with $$$N$$$ cells is $$$N^{-2/(d+1)}$$$, where $$$d$$$ is the number of variables.","PeriodicalId":339757,"journal":{"name":"Dnipro University Mathematics Bulletin","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lower estimates on the saturation order of approximation of twice continuously differentiable functions by piecewise constants on convex partitions\",\"authors\":\"O. Kozynenko\",\"doi\":\"10.15421/241805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of approximation order of twice continuously differentiable functions of many variables by piecewise constants. We show that the saturation order of piecewise constant approximation in $$$L_p$$$ norm on convex partitions with $$$N$$$ cells is $$$N^{-2/(d+1)}$$$, where $$$d$$$ is the number of variables.\",\"PeriodicalId\":339757,\"journal\":{\"name\":\"Dnipro University Mathematics Bulletin\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dnipro University Mathematics Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/241805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dnipro University Mathematics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/241805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用分段常数法研究二次连续可微多变量函数的逼近阶问题。我们证明了$$$L_p$$$范数在$$$N单元的凸分区上的分段常数逼近的饱和阶为$$$N^{-2/(d+1)}$$$,其中$$$d$$$为变量数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower estimates on the saturation order of approximation of twice continuously differentiable functions by piecewise constants on convex partitions
We consider the problem of approximation order of twice continuously differentiable functions of many variables by piecewise constants. We show that the saturation order of piecewise constant approximation in $$$L_p$$$ norm on convex partitions with $$$N$$$ cells is $$$N^{-2/(d+1)}$$$, where $$$d$$$ is the number of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信