基于离散化和CNN的ALS点云语义标注框架

Xingtao Wang, Xiaopeng Fan, Debin Zhao
{"title":"基于离散化和CNN的ALS点云语义标注框架","authors":"Xingtao Wang, Xiaopeng Fan, Debin Zhao","doi":"10.1109/VCIP49819.2020.9301759","DOIUrl":null,"url":null,"abstract":"The airborne laser scanning (ALS) point cloud has drawn increasing attention thanks to its capability to quickly acquire large-scale and high-precision ground information. Due to the complexity of observed scenes and the irregularity of point distribution, the semantic labeling of ALS point clouds is extremely challenging. In this paper, we introduce an efficient discretization based framework according to the geometric character of ALS point clouds, and propose an original intraclass weighted cross entropy loss function to solve the problem of data imbalance. We evaluate our framework on the ISPRS (International Society for Photogrammetry and Remote Sensing) 3D Semantic Labeling dataset. The experimental results show that the proposed method has achieved a new state-of-the-art performance in terms of overall accuracy (85.3%) and average F1 score (74.1%).","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semantic labeling framework for ALS point clouds based on discretization and CNN\",\"authors\":\"Xingtao Wang, Xiaopeng Fan, Debin Zhao\",\"doi\":\"10.1109/VCIP49819.2020.9301759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The airborne laser scanning (ALS) point cloud has drawn increasing attention thanks to its capability to quickly acquire large-scale and high-precision ground information. Due to the complexity of observed scenes and the irregularity of point distribution, the semantic labeling of ALS point clouds is extremely challenging. In this paper, we introduce an efficient discretization based framework according to the geometric character of ALS point clouds, and propose an original intraclass weighted cross entropy loss function to solve the problem of data imbalance. We evaluate our framework on the ISPRS (International Society for Photogrammetry and Remote Sensing) 3D Semantic Labeling dataset. The experimental results show that the proposed method has achieved a new state-of-the-art performance in terms of overall accuracy (85.3%) and average F1 score (74.1%).\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机载激光扫描(ALS)点云以其快速获取大尺度、高精度地面信息的能力受到越来越多的关注。由于观测场景的复杂性和点分布的不规则性,ALS点云的语义标注极具挑战性。本文根据ALS点云的几何特征,引入了一种有效的离散化框架,并提出了一种新颖的类内加权交叉熵损失函数来解决数据不平衡问题。我们在ISPRS(国际摄影测量与遥感学会)3D语义标记数据集上评估了我们的框架。实验结果表明,该方法在整体准确率(85.3%)和平均F1分数(74.1%)方面取得了较好的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semantic labeling framework for ALS point clouds based on discretization and CNN
The airborne laser scanning (ALS) point cloud has drawn increasing attention thanks to its capability to quickly acquire large-scale and high-precision ground information. Due to the complexity of observed scenes and the irregularity of point distribution, the semantic labeling of ALS point clouds is extremely challenging. In this paper, we introduce an efficient discretization based framework according to the geometric character of ALS point clouds, and propose an original intraclass weighted cross entropy loss function to solve the problem of data imbalance. We evaluate our framework on the ISPRS (International Society for Photogrammetry and Remote Sensing) 3D Semantic Labeling dataset. The experimental results show that the proposed method has achieved a new state-of-the-art performance in terms of overall accuracy (85.3%) and average F1 score (74.1%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信