64-QAM Golay互补序列的构建

Ying Li
{"title":"64-QAM Golay互补序列的构建","authors":"Ying Li","doi":"10.1109/ITWITWN.2007.4318054","DOIUrl":null,"url":null,"abstract":"The construction of 64-QAM Golay sequences is discussed based on extensions of Lee and Golomb's construction. On length n = 2m sequences, Lee and Golomb reported 496, 808, and 976 first order offset pairs for m=2, 3, 4. We found 724, 972, and 1224 offset pairs from computer search over all first order offset pairs. Some additional pairs can be obtained by adding w = 1 to Case III in Lee and Golomb's offset pair descriptions, others are new and only exist for w>3. The descriptions of new offset pairs and the enumeration of all first order offset pairs are proposed as conjectures. The number of first order offset pairs, [240(m + 1) + 4 + 2(m - 2)(m + 1)], agrees with computer results for ;m=2~6. The peak envelope power upper bound is shown to remain as 4.6667n. An example shows that other 64-QAM Golay sequences not within this construction can be generated using QPSK Golay sequences with third order algebraic normal form.","PeriodicalId":257392,"journal":{"name":"2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks","volume":"503 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the Construction of 64-QAM Golay Complementary Sequences\",\"authors\":\"Ying Li\",\"doi\":\"10.1109/ITWITWN.2007.4318054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The construction of 64-QAM Golay sequences is discussed based on extensions of Lee and Golomb's construction. On length n = 2m sequences, Lee and Golomb reported 496, 808, and 976 first order offset pairs for m=2, 3, 4. We found 724, 972, and 1224 offset pairs from computer search over all first order offset pairs. Some additional pairs can be obtained by adding w = 1 to Case III in Lee and Golomb's offset pair descriptions, others are new and only exist for w>3. The descriptions of new offset pairs and the enumeration of all first order offset pairs are proposed as conjectures. The number of first order offset pairs, [240(m + 1) + 4 + 2(m - 2)(m + 1)], agrees with computer results for ;m=2~6. The peak envelope power upper bound is shown to remain as 4.6667n. An example shows that other 64-QAM Golay sequences not within this construction can be generated using QPSK Golay sequences with third order algebraic normal form.\",\"PeriodicalId\":257392,\"journal\":{\"name\":\"2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks\",\"volume\":\"503 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWITWN.2007.4318054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWITWN.2007.4318054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于Lee和Golomb构造的扩展,讨论了64-QAM Golay序列的构造。在长度n = 2m的序列上,Lee和Golomb报道了m= 2,3,4的496、808和976个一阶偏移对。我们从计算机搜索中找到了724、972和1224对一阶偏移量对。通过将w = 1添加到Lee和Golomb的偏移对描述中的情形III中,可以获得一些额外的对,其他的是新的,只存在于w>3中。提出了新的偏移对的描述和所有一阶偏移对的枚举。一阶偏移对的数目[240(m + 1) + 4 + 2(m - 2)(m + 1)]与m=2~6时的计算机结果一致。峰值包络功率上界保持为4.6667n。实例表明,其他64-QAM Golay序列也可以使用三阶代数范式的QPSK Golay序列生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Construction of 64-QAM Golay Complementary Sequences
The construction of 64-QAM Golay sequences is discussed based on extensions of Lee and Golomb's construction. On length n = 2m sequences, Lee and Golomb reported 496, 808, and 976 first order offset pairs for m=2, 3, 4. We found 724, 972, and 1224 offset pairs from computer search over all first order offset pairs. Some additional pairs can be obtained by adding w = 1 to Case III in Lee and Golomb's offset pair descriptions, others are new and only exist for w>3. The descriptions of new offset pairs and the enumeration of all first order offset pairs are proposed as conjectures. The number of first order offset pairs, [240(m + 1) + 4 + 2(m - 2)(m + 1)], agrees with computer results for ;m=2~6. The peak envelope power upper bound is shown to remain as 4.6667n. An example shows that other 64-QAM Golay sequences not within this construction can be generated using QPSK Golay sequences with third order algebraic normal form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信