纳米光子片上网络中工艺变化的容忍

Yi Xu, Jun Yang, R. Melhem
{"title":"纳米光子片上网络中工艺变化的容忍","authors":"Yi Xu, Jun Yang, R. Melhem","doi":"10.1145/2366231.2337176","DOIUrl":null,"url":null,"abstract":"Nanophontonic networks, a potential candidate for future networks on-chip, have been challenged for their reliability due to several device-level limitations. One of the main issues is that fabrication errors (a.k.a. process variations) can cause devices to malfunction, rendering communication unreliable. For example, microring resonator, a preferred optical modulator device, may not resonate at the designated wavelength under process variations (PV), leading to communication errors and bandwidth loss. This paper proposes a series of solutions to the wavelength drifting problem of microrings and subsequent bandwidth loss problem of an optical network, due to PV. The objective is to maximize network bandwidth through proper arrangement among microrings and wavelengths with minimum power requirement. Our arrangement, called “MinTrim”, solves this problem using simple integer linear programming, adding supplementary microrings and allowing flexible assignment of wavelengths to network nodes as long as the resulting network presents maximal bandwidth. Each step is shown to improve bandwidth provisioning with lower power requirement. Evaluations on a sample network show that a baseline network could lose more than 40% bandwidth due to PV. Such loss can be recovered by MinTrim to produce a network with 98.4% working bandwidth. In addition, the power required in arranging microrings is 39% lower than the baseline. Therefore, MinTrim provides an efficient PV-tolerant solution to improving the reliability of on-chip phontonics.","PeriodicalId":193578,"journal":{"name":"2012 39th Annual International Symposium on Computer Architecture (ISCA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Tolerating process variations in nanophotonic on-chip networks\",\"authors\":\"Yi Xu, Jun Yang, R. Melhem\",\"doi\":\"10.1145/2366231.2337176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanophontonic networks, a potential candidate for future networks on-chip, have been challenged for their reliability due to several device-level limitations. One of the main issues is that fabrication errors (a.k.a. process variations) can cause devices to malfunction, rendering communication unreliable. For example, microring resonator, a preferred optical modulator device, may not resonate at the designated wavelength under process variations (PV), leading to communication errors and bandwidth loss. This paper proposes a series of solutions to the wavelength drifting problem of microrings and subsequent bandwidth loss problem of an optical network, due to PV. The objective is to maximize network bandwidth through proper arrangement among microrings and wavelengths with minimum power requirement. Our arrangement, called “MinTrim”, solves this problem using simple integer linear programming, adding supplementary microrings and allowing flexible assignment of wavelengths to network nodes as long as the resulting network presents maximal bandwidth. Each step is shown to improve bandwidth provisioning with lower power requirement. Evaluations on a sample network show that a baseline network could lose more than 40% bandwidth due to PV. Such loss can be recovered by MinTrim to produce a network with 98.4% working bandwidth. In addition, the power required in arranging microrings is 39% lower than the baseline. Therefore, MinTrim provides an efficient PV-tolerant solution to improving the reliability of on-chip phontonics.\",\"PeriodicalId\":193578,\"journal\":{\"name\":\"2012 39th Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 39th Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2366231.2337176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 39th Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2366231.2337176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

纳米声子网络是未来片上网络的潜在候选,由于一些设备级的限制,其可靠性受到了挑战。其中一个主要问题是制造错误(又名工艺变化)可能导致设备故障,导致通信不可靠。例如,微环谐振器,一种优选的光调制器器件,在工艺变化(PV)下可能不能在指定波长共振,导致通信错误和带宽损失。本文针对由PV引起的微环波长漂移问题以及后续的光网络带宽损失问题,提出了一系列的解决方案。其目标是通过合理安排微环和波长,以最小的功率要求来最大化网络带宽。我们的安排,称为“MinTrim”,解决了这个问题,使用简单的整数线性规划,添加补充微环,并允许灵活地分配波长到网络节点,只要得到的网络呈现最大带宽。每个步骤都显示了以更低的功耗需求改善带宽供应。对一个示例网络的评估表明,由于PV,基线网络可能损失40%以上的带宽。MinTrim可以恢复这种损失,从而产生98.4%工作带宽的网络。此外,布置微环所需的功率比基线低39%。因此,MinTrim提供了一种高效的耐pv解决方案,以提高片上声子的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tolerating process variations in nanophotonic on-chip networks
Nanophontonic networks, a potential candidate for future networks on-chip, have been challenged for their reliability due to several device-level limitations. One of the main issues is that fabrication errors (a.k.a. process variations) can cause devices to malfunction, rendering communication unreliable. For example, microring resonator, a preferred optical modulator device, may not resonate at the designated wavelength under process variations (PV), leading to communication errors and bandwidth loss. This paper proposes a series of solutions to the wavelength drifting problem of microrings and subsequent bandwidth loss problem of an optical network, due to PV. The objective is to maximize network bandwidth through proper arrangement among microrings and wavelengths with minimum power requirement. Our arrangement, called “MinTrim”, solves this problem using simple integer linear programming, adding supplementary microrings and allowing flexible assignment of wavelengths to network nodes as long as the resulting network presents maximal bandwidth. Each step is shown to improve bandwidth provisioning with lower power requirement. Evaluations on a sample network show that a baseline network could lose more than 40% bandwidth due to PV. Such loss can be recovered by MinTrim to produce a network with 98.4% working bandwidth. In addition, the power required in arranging microrings is 39% lower than the baseline. Therefore, MinTrim provides an efficient PV-tolerant solution to improving the reliability of on-chip phontonics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信