多值函数决策图的平均路径长度

J. T. Butler, Tsutomu Sasao
{"title":"多值函数决策图的平均路径长度","authors":"J. T. Butler, Tsutomu Sasao","doi":"10.1109/ISMVL.2003.1201432","DOIUrl":null,"url":null,"abstract":"We consider the path length in decision diagrams for multiple-valued functions. This is an important measure of a decision diagram, since this models the time needed to evaluate the function. We focus on the average path length (APL), which is the sum of the path lengths over all assignments of values to the variables divided by the number of assignments. First, we show a multiple-valued function in which the APL is markedly affected by the order of variables. We show upper and lower bounds on the longest path length in a decision diagram of a multiple-valued function. Next, we derive the APL for individual functions, the MAX, ALL-MAX, and MODSUM functions. We show that the latter two functions achieve the lower and upper bound on the APL overall n-variable r-valued functions. Finally, we derive the average of the APL for two sets of functions, symmetric functions and all functions.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On the average path length in decision diagrams of multiple-valued functions\",\"authors\":\"J. T. Butler, Tsutomu Sasao\",\"doi\":\"10.1109/ISMVL.2003.1201432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the path length in decision diagrams for multiple-valued functions. This is an important measure of a decision diagram, since this models the time needed to evaluate the function. We focus on the average path length (APL), which is the sum of the path lengths over all assignments of values to the variables divided by the number of assignments. First, we show a multiple-valued function in which the APL is markedly affected by the order of variables. We show upper and lower bounds on the longest path length in a decision diagram of a multiple-valued function. Next, we derive the APL for individual functions, the MAX, ALL-MAX, and MODSUM functions. We show that the latter two functions achieve the lower and upper bound on the APL overall n-variable r-valued functions. Finally, we derive the average of the APL for two sets of functions, symmetric functions and all functions.\",\"PeriodicalId\":434515,\"journal\":{\"name\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2003.1201432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

研究了多值函数决策图中的路径长度问题。这是决策图的一个重要度量,因为它模拟了评估函数所需的时间。我们关注的是平均路径长度(APL),它是所有赋值给变量的路径长度之和除以赋值的数量。首先,我们展示了一个多值函数,其中APL明显受到变量顺序的影响。给出了多值函数决策图中最长路径长度的上界和下界。接下来,我们为单个函数,MAX, ALL-MAX和MODSUM函数导出APL。我们证明后两个函数实现了APL整体n变量r值函数的下界和上界。最后,我们推导了两组函数、对称函数和所有函数的APL的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the average path length in decision diagrams of multiple-valued functions
We consider the path length in decision diagrams for multiple-valued functions. This is an important measure of a decision diagram, since this models the time needed to evaluate the function. We focus on the average path length (APL), which is the sum of the path lengths over all assignments of values to the variables divided by the number of assignments. First, we show a multiple-valued function in which the APL is markedly affected by the order of variables. We show upper and lower bounds on the longest path length in a decision diagram of a multiple-valued function. Next, we derive the APL for individual functions, the MAX, ALL-MAX, and MODSUM functions. We show that the latter two functions achieve the lower and upper bound on the APL overall n-variable r-valued functions. Finally, we derive the average of the APL for two sets of functions, symmetric functions and all functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信