一种基于感知器的分支预测器结构及其FPGA实现

O. Cadenas, G. Megson, Daniel Jones
{"title":"一种基于感知器的分支预测器结构及其FPGA实现","authors":"O. Cadenas, G. Megson, Daniel Jones","doi":"10.1109/ISVLSI.2005.11","DOIUrl":null,"url":null,"abstract":"An unaltered rearrangement of the original computation of a neural based predictor at the algorithmic level is introduced as a new organization. Its FPGA implementation generates circuits that are 1.7 faster than a direct implementation of the original algorithm. This faster clock rate allows to implement predictors with longer history lengths using the nearly the same hardware budget.","PeriodicalId":158790,"journal":{"name":"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)","volume":"961 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A new organization for a perceptron-based branch predictor and its FPGA implementation\",\"authors\":\"O. Cadenas, G. Megson, Daniel Jones\",\"doi\":\"10.1109/ISVLSI.2005.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unaltered rearrangement of the original computation of a neural based predictor at the algorithmic level is introduced as a new organization. Its FPGA implementation generates circuits that are 1.7 faster than a direct implementation of the original algorithm. This faster clock rate allows to implement predictors with longer history lengths using the nearly the same hardware budget.\",\"PeriodicalId\":158790,\"journal\":{\"name\":\"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)\",\"volume\":\"961 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2005.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2005.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

将基于神经网络的预测器的原始计算在算法层面上进行不变的重排,作为一种新的组织形式。它的FPGA实现产生的电路比原始算法的直接实现快1.7。这个更快的时钟速率允许使用几乎相同的硬件预算实现具有更长的历史长度的预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new organization for a perceptron-based branch predictor and its FPGA implementation
An unaltered rearrangement of the original computation of a neural based predictor at the algorithmic level is introduced as a new organization. Its FPGA implementation generates circuits that are 1.7 faster than a direct implementation of the original algorithm. This faster clock rate allows to implement predictors with longer history lengths using the nearly the same hardware budget.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信