{"title":"量子点中间带太阳能电池","authors":"A. Martí, L. Cuadra, A. Luque","doi":"10.1109/PVSC.2000.916039","DOIUrl":null,"url":null,"abstract":"This paper discusses the possibility of manufacturing the intermediate band solar cell (IBSC), a cell with the potential of achieving 63.2% of efficiency under concentrated sunlight, using quantum dot technology. The 0-dimensionality nature of the dots avoids electron thermalisation between bands enhancing the possibilities for radiative recombination between bands and making possible the existence of three quasi-fermi levels, some of the pivots the theory of the IBSC is sustained on. In this sense, it is suggested that an InGaAs/AlGaAs system could be used for band engineering the optimum bandgaps of the IBSC cell (0.71 and 1.24 eV). Dots should be about 40 /spl Aring/ of radius, spaced in the range of 100 /spl Aring/ and distributed in a three dimensional array. The Stranski and Krastanow method is proposed as a technology for achieving this goal. The possibility of n-doping the dots is also discussed.","PeriodicalId":139803,"journal":{"name":"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"147","resultStr":"{\"title\":\"Quantum dot intermediate band solar cell\",\"authors\":\"A. Martí, L. Cuadra, A. Luque\",\"doi\":\"10.1109/PVSC.2000.916039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the possibility of manufacturing the intermediate band solar cell (IBSC), a cell with the potential of achieving 63.2% of efficiency under concentrated sunlight, using quantum dot technology. The 0-dimensionality nature of the dots avoids electron thermalisation between bands enhancing the possibilities for radiative recombination between bands and making possible the existence of three quasi-fermi levels, some of the pivots the theory of the IBSC is sustained on. In this sense, it is suggested that an InGaAs/AlGaAs system could be used for band engineering the optimum bandgaps of the IBSC cell (0.71 and 1.24 eV). Dots should be about 40 /spl Aring/ of radius, spaced in the range of 100 /spl Aring/ and distributed in a three dimensional array. The Stranski and Krastanow method is proposed as a technology for achieving this goal. The possibility of n-doping the dots is also discussed.\",\"PeriodicalId\":139803,\"journal\":{\"name\":\"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"147\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2000.916039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2000.916039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper discusses the possibility of manufacturing the intermediate band solar cell (IBSC), a cell with the potential of achieving 63.2% of efficiency under concentrated sunlight, using quantum dot technology. The 0-dimensionality nature of the dots avoids electron thermalisation between bands enhancing the possibilities for radiative recombination between bands and making possible the existence of three quasi-fermi levels, some of the pivots the theory of the IBSC is sustained on. In this sense, it is suggested that an InGaAs/AlGaAs system could be used for band engineering the optimum bandgaps of the IBSC cell (0.71 and 1.24 eV). Dots should be about 40 /spl Aring/ of radius, spaced in the range of 100 /spl Aring/ and distributed in a three dimensional array. The Stranski and Krastanow method is proposed as a technology for achieving this goal. The possibility of n-doping the dots is also discussed.