迈向计算二氧化碳捕获和储存模型

N. Makul
{"title":"迈向计算二氧化碳捕获和储存模型","authors":"N. Makul","doi":"10.15377/2410-3624.2021.08.5","DOIUrl":null,"url":null,"abstract":"This review is aimed to increase knowledge on computational CO2 capture and storage models that are gradually evolving in the design and development to act as more effective carbon capture agents with acceptable toxicity and costs and complementary adjuncts to experiments for comprehending amino-CO2 reaction mechanisms. Also, the review discussed experimental research of degradation reactions of aqueous organic amines, measurements, kinetics and forecasts of amine pKₐ values and amine-CO2 equilibria. Also, the researcher comprehensively discussed the computational simulation of mechanisms of carbon capture reactions. In the contexts of experimental and computational studies, the comparative advantages of bicarbonate, carbamic acid, termolecular and zwitterion are described. Computational approaches shall gradually evolve in the design and development to act as more effective carbon capture agents with acceptable toxicity and costs and complementary adjuncts to experiments for comprehending amino-CO2 reaction mechanisms. Some of the main research findings indicate that advancements in quantum computing might help in simulating larger complex molecules such as CO2. Moreover, the simulations might discover new catalysts for CO2 capture that are more efficient and cheaper than present models. CO2 capture and storage (CCS) could minimize the CO2 emission volume by 14%. The first stride in CCS is capturing CO2. It accounts for 70% -80% of this technology total costs. Virtually, 50% of the costs to operate the post-combustion capture (PCC) plants are related to steam costs. It is thus important to acquire the best possible data to avoid unnecessary costs and overdesigns.","PeriodicalId":184880,"journal":{"name":"The Global Environmental Engineers","volume":"851 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Computational CO2 Capture and Storage Models\",\"authors\":\"N. Makul\",\"doi\":\"10.15377/2410-3624.2021.08.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review is aimed to increase knowledge on computational CO2 capture and storage models that are gradually evolving in the design and development to act as more effective carbon capture agents with acceptable toxicity and costs and complementary adjuncts to experiments for comprehending amino-CO2 reaction mechanisms. Also, the review discussed experimental research of degradation reactions of aqueous organic amines, measurements, kinetics and forecasts of amine pKₐ values and amine-CO2 equilibria. Also, the researcher comprehensively discussed the computational simulation of mechanisms of carbon capture reactions. In the contexts of experimental and computational studies, the comparative advantages of bicarbonate, carbamic acid, termolecular and zwitterion are described. Computational approaches shall gradually evolve in the design and development to act as more effective carbon capture agents with acceptable toxicity and costs and complementary adjuncts to experiments for comprehending amino-CO2 reaction mechanisms. Some of the main research findings indicate that advancements in quantum computing might help in simulating larger complex molecules such as CO2. Moreover, the simulations might discover new catalysts for CO2 capture that are more efficient and cheaper than present models. CO2 capture and storage (CCS) could minimize the CO2 emission volume by 14%. The first stride in CCS is capturing CO2. It accounts for 70% -80% of this technology total costs. Virtually, 50% of the costs to operate the post-combustion capture (PCC) plants are related to steam costs. It is thus important to acquire the best possible data to avoid unnecessary costs and overdesigns.\",\"PeriodicalId\":184880,\"journal\":{\"name\":\"The Global Environmental Engineers\",\"volume\":\"851 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Global Environmental Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15377/2410-3624.2021.08.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Global Environmental Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2410-3624.2021.08.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述的目的是增加对计算二氧化碳捕获和储存模型的了解,这些模型在设计和开发中逐渐发展成为更有效的碳捕获剂,具有可接受的毒性和成本,并且是理解氨基-二氧化碳反应机制的实验的补充辅助手段。综述了水相有机胺降解反应的实验研究、胺pK值的测定、动力学和预测以及胺- co2平衡。同时,对碳捕获反应机理的计算模拟进行了全面的探讨。在实验和计算研究的背景下,描述了碳酸氢盐、氨基甲酸、三分子和两性离子的比较优势。计算方法应在设计和开发中逐步发展,作为更有效的碳捕获剂,具有可接受的毒性和成本,并作为理解氨基-二氧化碳反应机制的实验的补充辅助手段。一些主要的研究结果表明,量子计算的进步可能有助于模拟更大的复杂分子,如二氧化碳。此外,模拟可能会发现比现有模型更有效、更便宜的二氧化碳捕获新催化剂。二氧化碳捕集与封存(CCS)可以将二氧化碳排放量减少14%。CCS的第一步是捕获二氧化碳。它占该技术总成本的70% -80%。实际上,燃烧后捕集(PCC)电厂运营成本的50%与蒸汽成本有关。因此,获取尽可能好的数据以避免不必要的成本和过度设计是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Computational CO2 Capture and Storage Models
This review is aimed to increase knowledge on computational CO2 capture and storage models that are gradually evolving in the design and development to act as more effective carbon capture agents with acceptable toxicity and costs and complementary adjuncts to experiments for comprehending amino-CO2 reaction mechanisms. Also, the review discussed experimental research of degradation reactions of aqueous organic amines, measurements, kinetics and forecasts of amine pKₐ values and amine-CO2 equilibria. Also, the researcher comprehensively discussed the computational simulation of mechanisms of carbon capture reactions. In the contexts of experimental and computational studies, the comparative advantages of bicarbonate, carbamic acid, termolecular and zwitterion are described. Computational approaches shall gradually evolve in the design and development to act as more effective carbon capture agents with acceptable toxicity and costs and complementary adjuncts to experiments for comprehending amino-CO2 reaction mechanisms. Some of the main research findings indicate that advancements in quantum computing might help in simulating larger complex molecules such as CO2. Moreover, the simulations might discover new catalysts for CO2 capture that are more efficient and cheaper than present models. CO2 capture and storage (CCS) could minimize the CO2 emission volume by 14%. The first stride in CCS is capturing CO2. It accounts for 70% -80% of this technology total costs. Virtually, 50% of the costs to operate the post-combustion capture (PCC) plants are related to steam costs. It is thus important to acquire the best possible data to avoid unnecessary costs and overdesigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信