ISA映射器:一个计算和硬件无关的深度学习编译器

Matthew Sotoudeh, Anand Venkat, Michael J. Anderson, E. Georganas, A. Heinecke, Jason Knight
{"title":"ISA映射器:一个计算和硬件无关的深度学习编译器","authors":"Matthew Sotoudeh, Anand Venkat, Michael J. Anderson, E. Georganas, A. Heinecke, Jason Knight","doi":"10.1145/3310273.3321559","DOIUrl":null,"url":null,"abstract":"Domain specific accelerators present new challenges for code generation onto novel instruction sets, communication fabrics, and memory architectures. We introduce a shared intermediate representation to describe both deep learning programs and hardware capabilities, then formulate and apply instruction mapping to determine how a computation can be performed on a hardware system. Our scheduler chooses a specific mapping and determines data movement and computation order. With this system, we demonstrate automated extraction of matrix multiplication kernels from recent deep learning operations. We demonstrate 2--5X better performance on GEMM and GRU execution versus state-of-the-art on new hardware and up to 85% of state-of-the-art performance on existing hardware.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"ISA mapper: a compute and hardware agnostic deep learning compiler\",\"authors\":\"Matthew Sotoudeh, Anand Venkat, Michael J. Anderson, E. Georganas, A. Heinecke, Jason Knight\",\"doi\":\"10.1145/3310273.3321559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain specific accelerators present new challenges for code generation onto novel instruction sets, communication fabrics, and memory architectures. We introduce a shared intermediate representation to describe both deep learning programs and hardware capabilities, then formulate and apply instruction mapping to determine how a computation can be performed on a hardware system. Our scheduler chooses a specific mapping and determines data movement and computation order. With this system, we demonstrate automated extraction of matrix multiplication kernels from recent deep learning operations. We demonstrate 2--5X better performance on GEMM and GRU execution versus state-of-the-art on new hardware and up to 85% of state-of-the-art performance on existing hardware.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3321559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3321559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

领域特定的加速器为在新的指令集、通信结构和内存体系结构上生成代码提出了新的挑战。我们引入了一个共享的中间表示来描述深度学习程序和硬件功能,然后制定和应用指令映射来确定如何在硬件系统上执行计算。我们的调度器选择一个特定的映射,并确定数据移动和计算顺序。利用这个系统,我们演示了从最近的深度学习操作中自动提取矩阵乘法核。我们展示了在GEMM和GRU执行上的性能比在新硬件上的性能提高2- 5倍,在现有硬件上的性能提高85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ISA mapper: a compute and hardware agnostic deep learning compiler
Domain specific accelerators present new challenges for code generation onto novel instruction sets, communication fabrics, and memory architectures. We introduce a shared intermediate representation to describe both deep learning programs and hardware capabilities, then formulate and apply instruction mapping to determine how a computation can be performed on a hardware system. Our scheduler chooses a specific mapping and determines data movement and computation order. With this system, we demonstrate automated extraction of matrix multiplication kernels from recent deep learning operations. We demonstrate 2--5X better performance on GEMM and GRU execution versus state-of-the-art on new hardware and up to 85% of state-of-the-art performance on existing hardware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信