土耳其社交媒体的神经文本规范化

Sinan Göker, Burcu Can
{"title":"土耳其社交媒体的神经文本规范化","authors":"Sinan Göker, Burcu Can","doi":"10.1109/UBMK.2018.8566406","DOIUrl":null,"url":null,"abstract":"Social media has become a rich data source for natural language processing tasks with its worldwide use; however, it is hard to process social media data due to its informal nature. Text normalization is the task of transforming the noisy text into its canonical form. It generally serves as a preprocessing task in other NLP tasks that are applied to noisy text. In this study, we apply two approaches for Turkish text normalization: Contextual Normalization approach using distributed representations of words and Sequence-to-Sequence Normalization approach using neural encoder-decoder models. As the approaches applied to Turkish and also other languages are mostly rule-based, additional rules are required to be added to the normalization model in order to detect new error patterns arising from the change of the language use in social media. In contrast to rule-based approaches, the proposed approaches provide the advantage of normalizing different error patterns that change over time by training with a new dataset and updating the normalization model. Therefore, the proposed methods provide a solution to language change dependency in social media by updating the normalization model without defining new rules.","PeriodicalId":293249,"journal":{"name":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural Text Normalization for Turkish Social Media\",\"authors\":\"Sinan Göker, Burcu Can\",\"doi\":\"10.1109/UBMK.2018.8566406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media has become a rich data source for natural language processing tasks with its worldwide use; however, it is hard to process social media data due to its informal nature. Text normalization is the task of transforming the noisy text into its canonical form. It generally serves as a preprocessing task in other NLP tasks that are applied to noisy text. In this study, we apply two approaches for Turkish text normalization: Contextual Normalization approach using distributed representations of words and Sequence-to-Sequence Normalization approach using neural encoder-decoder models. As the approaches applied to Turkish and also other languages are mostly rule-based, additional rules are required to be added to the normalization model in order to detect new error patterns arising from the change of the language use in social media. In contrast to rule-based approaches, the proposed approaches provide the advantage of normalizing different error patterns that change over time by training with a new dataset and updating the normalization model. Therefore, the proposed methods provide a solution to language change dependency in social media by updating the normalization model without defining new rules.\",\"PeriodicalId\":293249,\"journal\":{\"name\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 3rd International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2018.8566406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 3rd International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2018.8566406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

社交媒体已成为自然语言处理任务的丰富数据源。然而,由于社交媒体数据的非正式性,很难对其进行处理。文本规范化是将有噪声的文本转换为规范形式的任务。它通常作为其他应用于噪声文本的NLP任务的预处理任务。在本研究中,我们采用了两种方法进行土耳其语文本规范化:使用分布式单词表示的上下文规范化方法和使用神经编码器-解码器模型的序列到序列规范化方法。由于应用于土耳其语和其他语言的方法大多是基于规则的,因此需要在规范化模型中添加额外的规则,以检测由于社交媒体中语言使用的变化而产生的新错误模式。与基于规则的方法相比,所提出的方法提供了通过使用新数据集训练和更新规范化模型来规范化随时间变化的不同错误模式的优势。因此,本文提出的方法在不定义新规则的情况下,通过更新规范化模型来解决社交媒体中语言变化依赖的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Text Normalization for Turkish Social Media
Social media has become a rich data source for natural language processing tasks with its worldwide use; however, it is hard to process social media data due to its informal nature. Text normalization is the task of transforming the noisy text into its canonical form. It generally serves as a preprocessing task in other NLP tasks that are applied to noisy text. In this study, we apply two approaches for Turkish text normalization: Contextual Normalization approach using distributed representations of words and Sequence-to-Sequence Normalization approach using neural encoder-decoder models. As the approaches applied to Turkish and also other languages are mostly rule-based, additional rules are required to be added to the normalization model in order to detect new error patterns arising from the change of the language use in social media. In contrast to rule-based approaches, the proposed approaches provide the advantage of normalizing different error patterns that change over time by training with a new dataset and updating the normalization model. Therefore, the proposed methods provide a solution to language change dependency in social media by updating the normalization model without defining new rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信