C. McCausland, P. Biglarbeigi, R. Bond, G. Yadollahikhales, D. Finlay
{"title":"睡眠阶段转换的时频脊分析","authors":"C. McCausland, P. Biglarbeigi, R. Bond, G. Yadollahikhales, D. Finlay","doi":"10.1109/SPMB55497.2022.10014897","DOIUrl":null,"url":null,"abstract":"The development of automated sleep apnea detection algorithms is an emerging topic of interest [1], [2]. The main aim of automation is to reduce the time and cost associated with manually scoring polysomnogram (PSG) tests [3]. To automate the process, traditional algorithms attempt to mimic the human observer by implementing a series of predefined rules, such as the American Academy of Sleep Medicine's (AASM) scoring guidelines [4]. Recently, data driven methods have emerged [5]. Electroencephalogram (EEG) frequency is known to be an important feature for both the human observer and data driven methods for sleep staging classification. This study presents the initial findings for a novel approach to sleep stage analysis. EEG time-frequency analysis is used to characterise the dominant frequency with respect to time, specifically at the point of sleep stage transition. Poor inter-scorer agreement at sleep stage transitions is a noted limitation of current manual and automated methods as the point of transition is poorly defined [6]. The goal of this study is to further discuss on the topic of sleep staging automation and explore alternative and novel features to improve the inter-scorer reliability of sleep staging.","PeriodicalId":261445,"journal":{"name":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-Frequency Ridge Analysis of Sleep Stage Transitions\",\"authors\":\"C. McCausland, P. Biglarbeigi, R. Bond, G. Yadollahikhales, D. Finlay\",\"doi\":\"10.1109/SPMB55497.2022.10014897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of automated sleep apnea detection algorithms is an emerging topic of interest [1], [2]. The main aim of automation is to reduce the time and cost associated with manually scoring polysomnogram (PSG) tests [3]. To automate the process, traditional algorithms attempt to mimic the human observer by implementing a series of predefined rules, such as the American Academy of Sleep Medicine's (AASM) scoring guidelines [4]. Recently, data driven methods have emerged [5]. Electroencephalogram (EEG) frequency is known to be an important feature for both the human observer and data driven methods for sleep staging classification. This study presents the initial findings for a novel approach to sleep stage analysis. EEG time-frequency analysis is used to characterise the dominant frequency with respect to time, specifically at the point of sleep stage transition. Poor inter-scorer agreement at sleep stage transitions is a noted limitation of current manual and automated methods as the point of transition is poorly defined [6]. The goal of this study is to further discuss on the topic of sleep staging automation and explore alternative and novel features to improve the inter-scorer reliability of sleep staging.\",\"PeriodicalId\":261445,\"journal\":{\"name\":\"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPMB55497.2022.10014897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB55497.2022.10014897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-Frequency Ridge Analysis of Sleep Stage Transitions
The development of automated sleep apnea detection algorithms is an emerging topic of interest [1], [2]. The main aim of automation is to reduce the time and cost associated with manually scoring polysomnogram (PSG) tests [3]. To automate the process, traditional algorithms attempt to mimic the human observer by implementing a series of predefined rules, such as the American Academy of Sleep Medicine's (AASM) scoring guidelines [4]. Recently, data driven methods have emerged [5]. Electroencephalogram (EEG) frequency is known to be an important feature for both the human observer and data driven methods for sleep staging classification. This study presents the initial findings for a novel approach to sleep stage analysis. EEG time-frequency analysis is used to characterise the dominant frequency with respect to time, specifically at the point of sleep stage transition. Poor inter-scorer agreement at sleep stage transitions is a noted limitation of current manual and automated methods as the point of transition is poorly defined [6]. The goal of this study is to further discuss on the topic of sleep staging automation and explore alternative and novel features to improve the inter-scorer reliability of sleep staging.