{"title":"线性偏微分方程的逻辑解释","authors":"M. Kerjean","doi":"10.1145/3209108.3209192","DOIUrl":null,"url":null,"abstract":"Differential Linear Logic (DiLL), introduced by Ehrhard and Regnier, extends linear logic with a notion of linear approximation of proofs. While DiLL is classical logic, i.e. has an involutive negation, classical denotational models of it in which this notion of differentiation corresponds to the usual one, defined on any smooth function, were missing. We solve this issue by constructing a model of it based on nuclear topological vector spaces and distributions with compact support. This interpretation sheds a new light on the rules of DiLL, as we are able to understand them as the computational principles for the resolution of Linear Partial Differential Equations. We thus introduce D-DiLL, a deterministic refinement of DiLL with a D-exponential, for which we exhibit a cut-elimination procedure, and a categorical semantics. When D is a Linear Partial Differential Operator with constant coefficients, then the D-exponential is interpreted as the space of generalised functions ψ solutions to Dψ = φ. The logical inference rules represents the computational steps for the construction of the solution φ. We recover linear logic and its differential extension DiLL particular case.","PeriodicalId":389131,"journal":{"name":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Logical Account for Linear Partial Differential Equations\",\"authors\":\"M. Kerjean\",\"doi\":\"10.1145/3209108.3209192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential Linear Logic (DiLL), introduced by Ehrhard and Regnier, extends linear logic with a notion of linear approximation of proofs. While DiLL is classical logic, i.e. has an involutive negation, classical denotational models of it in which this notion of differentiation corresponds to the usual one, defined on any smooth function, were missing. We solve this issue by constructing a model of it based on nuclear topological vector spaces and distributions with compact support. This interpretation sheds a new light on the rules of DiLL, as we are able to understand them as the computational principles for the resolution of Linear Partial Differential Equations. We thus introduce D-DiLL, a deterministic refinement of DiLL with a D-exponential, for which we exhibit a cut-elimination procedure, and a categorical semantics. When D is a Linear Partial Differential Operator with constant coefficients, then the D-exponential is interpreted as the space of generalised functions ψ solutions to Dψ = φ. The logical inference rules represents the computational steps for the construction of the solution φ. We recover linear logic and its differential extension DiLL particular case.\",\"PeriodicalId\":389131,\"journal\":{\"name\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209108.3209192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209108.3209192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Logical Account for Linear Partial Differential Equations
Differential Linear Logic (DiLL), introduced by Ehrhard and Regnier, extends linear logic with a notion of linear approximation of proofs. While DiLL is classical logic, i.e. has an involutive negation, classical denotational models of it in which this notion of differentiation corresponds to the usual one, defined on any smooth function, were missing. We solve this issue by constructing a model of it based on nuclear topological vector spaces and distributions with compact support. This interpretation sheds a new light on the rules of DiLL, as we are able to understand them as the computational principles for the resolution of Linear Partial Differential Equations. We thus introduce D-DiLL, a deterministic refinement of DiLL with a D-exponential, for which we exhibit a cut-elimination procedure, and a categorical semantics. When D is a Linear Partial Differential Operator with constant coefficients, then the D-exponential is interpreted as the space of generalised functions ψ solutions to Dψ = φ. The logical inference rules represents the computational steps for the construction of the solution φ. We recover linear logic and its differential extension DiLL particular case.