M. Flatscher, M. Neumayer, T. Bretterklieber, M. Moser, H. Zangl
{"title":"用于气象设备的融冰探测和温度传感系统","authors":"M. Flatscher, M. Neumayer, T. Bretterklieber, M. Moser, H. Zangl","doi":"10.1109/SAS.2015.7133572","DOIUrl":null,"url":null,"abstract":"We present a de-icing system indented for application with meteorological sensors in harsh environments. The heating unit is implemented as a double-meander structure on a printed circuit board. The double-meander structure allows for measuring capacitance in the differential mode. The presence of ice (and water) leads to an increase of the capacitance and can thus be detected. Additionally, the temperature of the heating unit can be obtained from the temperature dependent variation of the ohmic resistance of the heating structure. With this information the heating unit can be controlled efficiently as excessive heating or heating in the absence of ice can be avoided.","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"De-icing system with integrated ice detection and temperature sensing for meteorological devices\",\"authors\":\"M. Flatscher, M. Neumayer, T. Bretterklieber, M. Moser, H. Zangl\",\"doi\":\"10.1109/SAS.2015.7133572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a de-icing system indented for application with meteorological sensors in harsh environments. The heating unit is implemented as a double-meander structure on a printed circuit board. The double-meander structure allows for measuring capacitance in the differential mode. The presence of ice (and water) leads to an increase of the capacitance and can thus be detected. Additionally, the temperature of the heating unit can be obtained from the temperature dependent variation of the ohmic resistance of the heating structure. With this information the heating unit can be controlled efficiently as excessive heating or heating in the absence of ice can be avoided.\",\"PeriodicalId\":384041,\"journal\":{\"name\":\"2015 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2015.7133572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
De-icing system with integrated ice detection and temperature sensing for meteorological devices
We present a de-icing system indented for application with meteorological sensors in harsh environments. The heating unit is implemented as a double-meander structure on a printed circuit board. The double-meander structure allows for measuring capacitance in the differential mode. The presence of ice (and water) leads to an increase of the capacitance and can thus be detected. Additionally, the temperature of the heating unit can be obtained from the temperature dependent variation of the ohmic resistance of the heating structure. With this information the heating unit can be controlled efficiently as excessive heating or heating in the absence of ice can be avoided.