嵌入主成分分析在低成本物联网网关结构健康监测中的数据缩减

A. Burrello, Alex Marchioni, D. Brunelli, L. Benini
{"title":"嵌入主成分分析在低成本物联网网关结构健康监测中的数据缩减","authors":"A. Burrello, Alex Marchioni, D. Brunelli, L. Benini","doi":"10.1145/3310273.3322822","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is a powerful data reduction method for Structural Health Monitoring. However, its computational cost and data memory footprint pose a significant challenge when PCA has to run on limited capability embedded platforms in low-cost IoT gateways. This paper presents a memory-efficient parallel implementation of the streaming History PCA algorithm. On our dataset, it achieves 10x compression factor and 59x memory reduction with less than 0.15 dB degradation in the reconstructed signal-to-noise ratio (RSNR) compared to standard PCA. Moreover, the algorithm benefits from parallelization on multiple cores, achieving a maximum speedup of 4.8x on Samsung ARTIK 710.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways\",\"authors\":\"A. Burrello, Alex Marchioni, D. Brunelli, L. Benini\",\"doi\":\"10.1145/3310273.3322822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principal component analysis (PCA) is a powerful data reduction method for Structural Health Monitoring. However, its computational cost and data memory footprint pose a significant challenge when PCA has to run on limited capability embedded platforms in low-cost IoT gateways. This paper presents a memory-efficient parallel implementation of the streaming History PCA algorithm. On our dataset, it achieves 10x compression factor and 59x memory reduction with less than 0.15 dB degradation in the reconstructed signal-to-noise ratio (RSNR) compared to standard PCA. Moreover, the algorithm benefits from parallelization on multiple cores, achieving a maximum speedup of 4.8x on Samsung ARTIK 710.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3322822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3322822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

主成分分析(PCA)是结构健康监测中一种强有力的数据约简方法。然而,当PCA必须在低成本物联网网关的有限功能嵌入式平台上运行时,其计算成本和数据内存占用构成了重大挑战。本文提出了一种高效内存的流历史PCA算法的并行实现。在我们的数据集上,与标准PCA相比,它实现了10倍的压缩系数和59倍的内存减少,重构信噪比(RSNR)的下降小于0.15 dB。此外,该算法受益于多核并行化,在三星ARTIK 710上实现了4.8倍的最大加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways
Principal component analysis (PCA) is a powerful data reduction method for Structural Health Monitoring. However, its computational cost and data memory footprint pose a significant challenge when PCA has to run on limited capability embedded platforms in low-cost IoT gateways. This paper presents a memory-efficient parallel implementation of the streaming History PCA algorithm. On our dataset, it achieves 10x compression factor and 59x memory reduction with less than 0.15 dB degradation in the reconstructed signal-to-noise ratio (RSNR) compared to standard PCA. Moreover, the algorithm benefits from parallelization on multiple cores, achieving a maximum speedup of 4.8x on Samsung ARTIK 710.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信