任意伽罗瓦域多元二次拟群的构造

Simona Samardjiska, Yanling Chen, D. Gligoroski
{"title":"任意伽罗瓦域多元二次拟群的构造","authors":"Simona Samardjiska, Yanling Chen, D. Gligoroski","doi":"10.1109/ISIAS.2011.6122839","DOIUrl":null,"url":null,"abstract":"In this paper we describe two methods for constructing Multivariate Quadratic Quasigroups (MQQ) in Galois fields of any characteristic and order. Our constructions extend the previously known constructions defined for operations over the prime field of characteristic 2. Application of these new constructions can reduce the public key size of the recently introduced family of public key schemes based on MQQs up to 58 times.","PeriodicalId":139268,"journal":{"name":"2011 7th International Conference on Information Assurance and Security (IAS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Construction of Multivariate Quadratic Quasigroups (MQQs) in arbitrary Galois fields\",\"authors\":\"Simona Samardjiska, Yanling Chen, D. Gligoroski\",\"doi\":\"10.1109/ISIAS.2011.6122839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe two methods for constructing Multivariate Quadratic Quasigroups (MQQ) in Galois fields of any characteristic and order. Our constructions extend the previously known constructions defined for operations over the prime field of characteristic 2. Application of these new constructions can reduce the public key size of the recently introduced family of public key schemes based on MQQs up to 58 times.\",\"PeriodicalId\":139268,\"journal\":{\"name\":\"2011 7th International Conference on Information Assurance and Security (IAS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 7th International Conference on Information Assurance and Security (IAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIAS.2011.6122839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 7th International Conference on Information Assurance and Security (IAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIAS.2011.6122839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文给出了在任意特征阶的伽罗瓦域上构造多元二次拟群的两种方法。我们的构造扩展了先前为特征为2的素域上的运算所定义的构造。这些新结构的应用可以将最近引入的基于mqq的公钥方案家族的公钥大小减少58倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Multivariate Quadratic Quasigroups (MQQs) in arbitrary Galois fields
In this paper we describe two methods for constructing Multivariate Quadratic Quasigroups (MQQ) in Galois fields of any characteristic and order. Our constructions extend the previously known constructions defined for operations over the prime field of characteristic 2. Application of these new constructions can reduce the public key size of the recently introduced family of public key schemes based on MQQs up to 58 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信