基于预定义分类的数据聚类分析方法

Y. Liu
{"title":"基于预定义分类的数据聚类分析方法","authors":"Y. Liu","doi":"10.2139/ssrn.3403864","DOIUrl":null,"url":null,"abstract":"In this paper, we present a methodology to perform clustering and grouping analysis for dataset with classification constraints or definitions. The discussion is demonstrated with a full example based on real data. We start with the observed difference in the CIA and UN subregional definition of European countries, and consider what the impact is from a subregional house price ratio perspective. As documented in this report, we find that the presented approach useful for clustering analysis of the pre-identified subgroups to address subgroup based clustering problems.","PeriodicalId":433005,"journal":{"name":"Econometrics: Data Collection & Data Estimation Methodology eJournal","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Clustering Method for Analysis of Data Subject to Pre-Defined Classifications\",\"authors\":\"Y. Liu\",\"doi\":\"10.2139/ssrn.3403864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a methodology to perform clustering and grouping analysis for dataset with classification constraints or definitions. The discussion is demonstrated with a full example based on real data. We start with the observed difference in the CIA and UN subregional definition of European countries, and consider what the impact is from a subregional house price ratio perspective. As documented in this report, we find that the presented approach useful for clustering analysis of the pre-identified subgroups to address subgroup based clustering problems.\",\"PeriodicalId\":433005,\"journal\":{\"name\":\"Econometrics: Data Collection & Data Estimation Methodology eJournal\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Data Collection & Data Estimation Methodology eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3403864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Data Collection & Data Estimation Methodology eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3403864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种对具有分类约束或定义的数据集进行聚类和分组分析的方法。最后给出了一个基于实际数据的完整示例。我们从CIA和UN对欧洲国家的分区域定义中观察到的差异开始,并从分区域房价比率的角度考虑影响。正如本报告所述,我们发现所提出的方法对于预先识别的子组的聚类分析很有用,可以解决基于子组的聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Clustering Method for Analysis of Data Subject to Pre-Defined Classifications
In this paper, we present a methodology to perform clustering and grouping analysis for dataset with classification constraints or definitions. The discussion is demonstrated with a full example based on real data. We start with the observed difference in the CIA and UN subregional definition of European countries, and consider what the impact is from a subregional house price ratio perspective. As documented in this report, we find that the presented approach useful for clustering analysis of the pre-identified subgroups to address subgroup based clustering problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信