使用CNN的自动癫痫分类

P. Yaswanth, Pranav A, R. Minu
{"title":"使用CNN的自动癫痫分类","authors":"P. Yaswanth, Pranav A, R. Minu","doi":"10.1109/ICCSP48568.2020.9182338","DOIUrl":null,"url":null,"abstract":"In our world around one-third of people are suffering from seizures and these people must have a continuous optimal medication process. Now a day’s systems are developed with an algorithm for the detection of a seizure by using EEG data, sensors, and video/audio captures. But it still unclear what combination of technologies will give the best output of detection.","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Seizure Classification using CNN\",\"authors\":\"P. Yaswanth, Pranav A, R. Minu\",\"doi\":\"10.1109/ICCSP48568.2020.9182338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our world around one-third of people are suffering from seizures and these people must have a continuous optimal medication process. Now a day’s systems are developed with an algorithm for the detection of a seizure by using EEG data, sensors, and video/audio captures. But it still unclear what combination of technologies will give the best output of detection.\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们的世界里,大约有三分之一的人患有癫痫发作,这些人必须有一个持续的最佳药物治疗过程。现在,每天的系统都采用一种算法,通过使用脑电图数据、传感器和视频/音频捕获来检测癫痫发作。但目前尚不清楚哪种技术组合将提供最佳的检测输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Seizure Classification using CNN
In our world around one-third of people are suffering from seizures and these people must have a continuous optimal medication process. Now a day’s systems are developed with an algorithm for the detection of a seizure by using EEG data, sensors, and video/audio captures. But it still unclear what combination of technologies will give the best output of detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信