{"title":"单侧多变量稳定裕度的凸性","authors":"J. Tekawy, M. Safonov, R. Chiang","doi":"10.23919/ACC.1990.4790719","DOIUrl":null,"url":null,"abstract":"In evaluating the stability robustness of multivariable control systems having \"one-sided\" parameter uncertainty, a problem that naturally arises is the minimization over diagonal matrices D of the greatest eigenvalue of (eD Ae-D + (eD Ae-D)*)/2. The minimization is proved to be convex, thus guaranteeing that every local minimum, is also a global minimum and, in theory, guaranteeing the global convergence of generalised gradient nonlinear programming algorithms for computing the minimizing D.","PeriodicalId":307181,"journal":{"name":"1990 American Control Conference","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Convexity Property of the One-sided Multivariable Stability Margin\",\"authors\":\"J. Tekawy, M. Safonov, R. Chiang\",\"doi\":\"10.23919/ACC.1990.4790719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In evaluating the stability robustness of multivariable control systems having \\\"one-sided\\\" parameter uncertainty, a problem that naturally arises is the minimization over diagonal matrices D of the greatest eigenvalue of (eD Ae-D + (eD Ae-D)*)/2. The minimization is proved to be convex, thus guaranteeing that every local minimum, is also a global minimum and, in theory, guaranteeing the global convergence of generalised gradient nonlinear programming algorithms for computing the minimizing D.\",\"PeriodicalId\":307181,\"journal\":{\"name\":\"1990 American Control Conference\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1990.4790719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1990.4790719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convexity Property of the One-sided Multivariable Stability Margin
In evaluating the stability robustness of multivariable control systems having "one-sided" parameter uncertainty, a problem that naturally arises is the minimization over diagonal matrices D of the greatest eigenvalue of (eD Ae-D + (eD Ae-D)*)/2. The minimization is proved to be convex, thus guaranteeing that every local minimum, is also a global minimum and, in theory, guaranteeing the global convergence of generalised gradient nonlinear programming algorithms for computing the minimizing D.