利用ARIMA方法根据收入数据预测塑料制品所需原材料

B. Siregar, E. Nababan, Alexander Yap, U. Andayani, Fahmi
{"title":"利用ARIMA方法根据收入数据预测塑料制品所需原材料","authors":"B. Siregar, E. Nababan, Alexander Yap, U. Andayani, Fahmi","doi":"10.1109/ICEEIE.2017.8328777","DOIUrl":null,"url":null,"abstract":"Forecasting is a process of predicting something future by doing calculations from previous data. In this case the authors will forecast the sale of plastic production by using ARIMA Box-Jenkins method for 2015 forecasting. The data used is the sales data of plastic factory production in Bandung from 2012 to 2014. This research will use ARIMA procedure in SAS that allows for identification, Estimation and forecasting of Time Series models. The measurement of the accuracy of forecasting results is done with the MAPE (Mean Absolute Percentage Error) value. Forecasting results conducted for 2015 using ARIMA (3.0, 2) on plastic product sales data for 2012 to 2014 resulted in a prediction accuracy rate of 74% for PP Trilene and 68% for PP Tintapro products.","PeriodicalId":304532,"journal":{"name":"2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Forecasting of raw material needed for plastic products based in income data using ARIMA method\",\"authors\":\"B. Siregar, E. Nababan, Alexander Yap, U. Andayani, Fahmi\",\"doi\":\"10.1109/ICEEIE.2017.8328777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting is a process of predicting something future by doing calculations from previous data. In this case the authors will forecast the sale of plastic production by using ARIMA Box-Jenkins method for 2015 forecasting. The data used is the sales data of plastic factory production in Bandung from 2012 to 2014. This research will use ARIMA procedure in SAS that allows for identification, Estimation and forecasting of Time Series models. The measurement of the accuracy of forecasting results is done with the MAPE (Mean Absolute Percentage Error) value. Forecasting results conducted for 2015 using ARIMA (3.0, 2) on plastic product sales data for 2012 to 2014 resulted in a prediction accuracy rate of 74% for PP Trilene and 68% for PP Tintapro products.\",\"PeriodicalId\":304532,\"journal\":{\"name\":\"2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEIE.2017.8328777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Electrical, Electronics and Information Engineering (ICEEIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEIE.2017.8328777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

预测是一个通过对以前的数据进行计算来预测未来的过程。在这种情况下,作者将使用ARIMA Box-Jenkins方法预测2015年塑料产品的销售。使用的数据是2012 - 2014年万隆塑料厂生产的销售数据。本研究将使用SAS中的ARIMA程序,该程序允许对时间序列模型进行识别、估计和预测。预测结果的准确性是用MAPE(平均绝对百分比误差)值来衡量的。使用ARIMA(3.0, 2)对2012 - 2014年塑料产品销售数据进行2015年预测的结果是,PP Trilene产品的预测准确率为74%,PP Tintapro产品的预测准确率为68%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting of raw material needed for plastic products based in income data using ARIMA method
Forecasting is a process of predicting something future by doing calculations from previous data. In this case the authors will forecast the sale of plastic production by using ARIMA Box-Jenkins method for 2015 forecasting. The data used is the sales data of plastic factory production in Bandung from 2012 to 2014. This research will use ARIMA procedure in SAS that allows for identification, Estimation and forecasting of Time Series models. The measurement of the accuracy of forecasting results is done with the MAPE (Mean Absolute Percentage Error) value. Forecasting results conducted for 2015 using ARIMA (3.0, 2) on plastic product sales data for 2012 to 2014 resulted in a prediction accuracy rate of 74% for PP Trilene and 68% for PP Tintapro products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信