Igor Victorovich. Lakhno, Bertha Patricia Guzmán-Velázquez, J. A. Díaz-Méndez
{"title":"胎儿生长受限与正常妊娠胎儿窘迫的模糊检测在产前监测中的应用","authors":"Igor Victorovich. Lakhno, Bertha Patricia Guzmán-Velázquez, J. A. Díaz-Méndez","doi":"10.5772/INTECHOPEN.80223","DOIUrl":null,"url":null,"abstract":"Monitoring of fetal cardiac activity is a well-known approach to the assessment of fetal health. The fetal heart rate can be measured using conventional cardiotocography (CTG). However, this method does not provide the beat-to-beat variability of the fetal heart rate because of the averaging nature of the autocorrelation function that is used to estimate the heart rate from a set of heart beats enclosed in the autocorrelation function window. Therefore, CTG presents important limitations for fetal arrhythmia diagnosis. CTG has a high rate of false positives and poor interand intra-observer reliability, such that fetal status and the perinatal outcome cannot be predicted reliably. Non-invasive fetal electrocardiography (NI-FECG) is a promising low-cost and non-invasive continuous fetal monitoring alternative. However, there is little that has been published to date on the clinical usability of NI-FECG. The chapter will include data on the accurate diagnosing of fetal distress based on heart rate variability (HRV). A fuzzy logic inference system was designed based on a set of fetal descriptors selected from the HRV responses, as evident descriptors of fetal well-being, to increase the sensitivity and specificity of detection. This approach is found to be rather prospective for the subsequent clinical implementation.","PeriodicalId":363789,"journal":{"name":"Non-Invasive Diagnostic Methods - Image Processing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Detection of Fetal Distress for Antenatal Monitoring in Pregnancy with Fetal Growth Restriction and Normal\",\"authors\":\"Igor Victorovich. Lakhno, Bertha Patricia Guzmán-Velázquez, J. A. Díaz-Méndez\",\"doi\":\"10.5772/INTECHOPEN.80223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring of fetal cardiac activity is a well-known approach to the assessment of fetal health. The fetal heart rate can be measured using conventional cardiotocography (CTG). However, this method does not provide the beat-to-beat variability of the fetal heart rate because of the averaging nature of the autocorrelation function that is used to estimate the heart rate from a set of heart beats enclosed in the autocorrelation function window. Therefore, CTG presents important limitations for fetal arrhythmia diagnosis. CTG has a high rate of false positives and poor interand intra-observer reliability, such that fetal status and the perinatal outcome cannot be predicted reliably. Non-invasive fetal electrocardiography (NI-FECG) is a promising low-cost and non-invasive continuous fetal monitoring alternative. However, there is little that has been published to date on the clinical usability of NI-FECG. The chapter will include data on the accurate diagnosing of fetal distress based on heart rate variability (HRV). A fuzzy logic inference system was designed based on a set of fetal descriptors selected from the HRV responses, as evident descriptors of fetal well-being, to increase the sensitivity and specificity of detection. This approach is found to be rather prospective for the subsequent clinical implementation.\",\"PeriodicalId\":363789,\"journal\":{\"name\":\"Non-Invasive Diagnostic Methods - Image Processing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Invasive Diagnostic Methods - Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.80223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Invasive Diagnostic Methods - Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.80223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy Detection of Fetal Distress for Antenatal Monitoring in Pregnancy with Fetal Growth Restriction and Normal
Monitoring of fetal cardiac activity is a well-known approach to the assessment of fetal health. The fetal heart rate can be measured using conventional cardiotocography (CTG). However, this method does not provide the beat-to-beat variability of the fetal heart rate because of the averaging nature of the autocorrelation function that is used to estimate the heart rate from a set of heart beats enclosed in the autocorrelation function window. Therefore, CTG presents important limitations for fetal arrhythmia diagnosis. CTG has a high rate of false positives and poor interand intra-observer reliability, such that fetal status and the perinatal outcome cannot be predicted reliably. Non-invasive fetal electrocardiography (NI-FECG) is a promising low-cost and non-invasive continuous fetal monitoring alternative. However, there is little that has been published to date on the clinical usability of NI-FECG. The chapter will include data on the accurate diagnosing of fetal distress based on heart rate variability (HRV). A fuzzy logic inference system was designed based on a set of fetal descriptors selected from the HRV responses, as evident descriptors of fetal well-being, to increase the sensitivity and specificity of detection. This approach is found to be rather prospective for the subsequent clinical implementation.