无菱形边删除的参数化下界和改进核

R. B. Sandeep, N. Sivadasan
{"title":"无菱形边删除的参数化下界和改进核","authors":"R. B. Sandeep, N. Sivadasan","doi":"10.4230/LIPIcs.IPEC.2015.365","DOIUrl":null,"url":null,"abstract":"A diamond is a graph obtained by removing an edge from a complete graph on four vertices. A graph is diamond-free if it does not contain an induced diamond. The Diamond-free Edge Deletion problem asks to find whether there exist at most k edges in the input graph whose deletion results in a diamond-free graph. The problem was proved to be NP-complete and a polynomial kernel of O(k^4) vertices was found by Fellows et. al. (Discrete Optimization, 2011). \n \nIn this paper, we give an improved kernel of O(k^3) vertices for Diamond-free Edge Deletion. We give an alternative proof of the NP-completeness of the problem and observe that it cannot be solved in time 2^{o(k)} * n^{O(1)}, unless the Exponential Time Hypothesis fails.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Parameterized lower bound and improved kernel for Diamond-free Edge Deletion\",\"authors\":\"R. B. Sandeep, N. Sivadasan\",\"doi\":\"10.4230/LIPIcs.IPEC.2015.365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A diamond is a graph obtained by removing an edge from a complete graph on four vertices. A graph is diamond-free if it does not contain an induced diamond. The Diamond-free Edge Deletion problem asks to find whether there exist at most k edges in the input graph whose deletion results in a diamond-free graph. The problem was proved to be NP-complete and a polynomial kernel of O(k^4) vertices was found by Fellows et. al. (Discrete Optimization, 2011). \\n \\nIn this paper, we give an improved kernel of O(k^3) vertices for Diamond-free Edge Deletion. We give an alternative proof of the NP-completeness of the problem and observe that it cannot be solved in time 2^{o(k)} * n^{O(1)}, unless the Exponential Time Hypothesis fails.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2015.365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2015.365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

菱形图是从四个顶点的完全图中去掉一条边得到的图。如果图中不包含诱导金刚石,那么它就是无金刚石的。无菱形边删除问题要求找出输入图中是否存在最多k条边,其删除导致无菱形图。fellow等人(Discrete Optimization, 2011)证明了该问题是np完全的,并找到了O(k^4)个顶点的多项式核。本文给出了一种改进的O(k^3)顶点核,用于无菱形边删除。我们给出了问题np完备性的另一种证明,并观察到除非指数时间假设失效,否则它不能在2^{o(k)} * n^{o(1)}时间内解出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized lower bound and improved kernel for Diamond-free Edge Deletion
A diamond is a graph obtained by removing an edge from a complete graph on four vertices. A graph is diamond-free if it does not contain an induced diamond. The Diamond-free Edge Deletion problem asks to find whether there exist at most k edges in the input graph whose deletion results in a diamond-free graph. The problem was proved to be NP-complete and a polynomial kernel of O(k^4) vertices was found by Fellows et. al. (Discrete Optimization, 2011). In this paper, we give an improved kernel of O(k^3) vertices for Diamond-free Edge Deletion. We give an alternative proof of the NP-completeness of the problem and observe that it cannot be solved in time 2^{o(k)} * n^{O(1)}, unless the Exponential Time Hypothesis fails.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信