稳定/不稳定线性和非线性系统的自适应PID控制器

B. Badreddine, Feng-Yi Lin
{"title":"稳定/不稳定线性和非线性系统的自适应PID控制器","authors":"B. Badreddine, Feng-Yi Lin","doi":"10.1109/CCA.2001.974006","DOIUrl":null,"url":null,"abstract":"Proposes and analyzes a direct adaptive proportional-integral-derivative (APID) control scheme for off-line and online tuning of PID parameters. The tuning algorithm determines a set of PID parameters by minimizing an error function. The theory of adaptive interaction is used to design the APID control law. Two versions of the tuning algorithm are presented: the Frechet and approximation methods. These algorithms are applied to linear and nonlinear plants. Lyapunov stability theory is used to proof the stability of the approximation method. The analysis of the convergence properties and system performance are conducted by using computer simulations and several known adaptation concepts. The approximation method does not require the knowledge of the plant to be controlled; therefore, the control scheme becomes robust to plant changes.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Adaptive PID controller for stable/unstable linear and non-linear systems\",\"authors\":\"B. Badreddine, Feng-Yi Lin\",\"doi\":\"10.1109/CCA.2001.974006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes and analyzes a direct adaptive proportional-integral-derivative (APID) control scheme for off-line and online tuning of PID parameters. The tuning algorithm determines a set of PID parameters by minimizing an error function. The theory of adaptive interaction is used to design the APID control law. Two versions of the tuning algorithm are presented: the Frechet and approximation methods. These algorithms are applied to linear and nonlinear plants. Lyapunov stability theory is used to proof the stability of the approximation method. The analysis of the convergence properties and system performance are conducted by using computer simulations and several known adaptation concepts. The approximation method does not require the knowledge of the plant to be controlled; therefore, the control scheme becomes robust to plant changes.\",\"PeriodicalId\":365390,\"journal\":{\"name\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2001.974006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.974006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

针对PID参数的离线和在线整定,提出并分析了一种直接自适应比例-积分-导数(APID)控制方案。整定算法通过最小化误差函数来确定一组PID参数。采用自适应交互理论设计了pid控制律。给出了两种版本的调谐算法:Frechet法和近似法。这些算法适用于线性和非线性植物。利用李雅普诺夫稳定性理论证明了逼近方法的稳定性。利用计算机仿真和几种已知的自适应概念对系统的收敛特性和性能进行了分析。近似方法不需要对被控对象的知识;因此,控制方案对植物变化具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive PID controller for stable/unstable linear and non-linear systems
Proposes and analyzes a direct adaptive proportional-integral-derivative (APID) control scheme for off-line and online tuning of PID parameters. The tuning algorithm determines a set of PID parameters by minimizing an error function. The theory of adaptive interaction is used to design the APID control law. Two versions of the tuning algorithm are presented: the Frechet and approximation methods. These algorithms are applied to linear and nonlinear plants. Lyapunov stability theory is used to proof the stability of the approximation method. The analysis of the convergence properties and system performance are conducted by using computer simulations and several known adaptation concepts. The approximation method does not require the knowledge of the plant to be controlled; therefore, the control scheme becomes robust to plant changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信