基于字符和词判别模型的汉语分词和词性标注联合译码

Xinxin Li, Xuan Wang, Lin Yao
{"title":"基于字符和词判别模型的汉语分词和词性标注联合译码","authors":"Xinxin Li, Xuan Wang, Lin Yao","doi":"10.1109/IALP.2011.24","DOIUrl":null,"url":null,"abstract":"For Chinese word segmentation and POS tagging problem, both character-based and word-based discriminative approaches can be used. Experiments show that these two approaches bring different errors and can complement each other. In this paper, we propose a joint decoding model based on both character-based and word-based models using multi-beam search algorithm. Experimental results show that the joint decoding model outperforms character-based and word-based baseline models.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint Decoding for Chinese Word Segmentation and POS Tagging Using Character-Based and Word-Based Discriminative Models\",\"authors\":\"Xinxin Li, Xuan Wang, Lin Yao\",\"doi\":\"10.1109/IALP.2011.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Chinese word segmentation and POS tagging problem, both character-based and word-based discriminative approaches can be used. Experiments show that these two approaches bring different errors and can complement each other. In this paper, we propose a joint decoding model based on both character-based and word-based models using multi-beam search algorithm. Experimental results show that the joint decoding model outperforms character-based and word-based baseline models.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对于汉语分词和词性标注问题,可以采用基于字符的判别方法和基于词的判别方法。实验表明,这两种方法误差不同,可以互补。本文提出了一种基于多波束搜索算法的基于字符和词的联合解码模型。实验结果表明,联合解码模型优于基于字符和基于单词的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Decoding for Chinese Word Segmentation and POS Tagging Using Character-Based and Word-Based Discriminative Models
For Chinese word segmentation and POS tagging problem, both character-based and word-based discriminative approaches can be used. Experiments show that these two approaches bring different errors and can complement each other. In this paper, we propose a joint decoding model based on both character-based and word-based models using multi-beam search algorithm. Experimental results show that the joint decoding model outperforms character-based and word-based baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信