广义Delta法则在Sigmoid函数中的推广

A. Sperduti, A. Starita
{"title":"广义Delta法则在Sigmoid函数中的推广","authors":"A. Sperduti, A. Starita","doi":"10.1109/IEMBS.1991.684507","DOIUrl":null,"url":null,"abstract":"In this paper an extension of the generalized delta rule to adapt sigmoid functions is presented. The proposed learning procedure retains the standard generalized delta rule for weights changes and introduces changes of the sigmoid functions parameters in the same fashion. The adaptation of the nonlinearities so introduced allows to expect an acceleration of the learning and a better adaptation to the input pattern distribution.","PeriodicalId":297811,"journal":{"name":"Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extension Of Generalized Delta Rule To Adapt Sigmoid Functions\",\"authors\":\"A. Sperduti, A. Starita\",\"doi\":\"10.1109/IEMBS.1991.684507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an extension of the generalized delta rule to adapt sigmoid functions is presented. The proposed learning procedure retains the standard generalized delta rule for weights changes and introduces changes of the sigmoid functions parameters in the same fashion. The adaptation of the nonlinearities so introduced allows to expect an acceleration of the learning and a better adaptation to the input pattern distribution.\",\"PeriodicalId\":297811,\"journal\":{\"name\":\"Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1991.684507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society Volume 13: 1991","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1991.684507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对广义delta规则进行了推广,使之适用于s型函数。所提出的学习过程保留了权值变化的标准广义delta规则,并以相同的方式引入了s型函数参数的变化。这样引入的非线性的自适应允许预期学习的加速和对输入模式分布的更好的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension Of Generalized Delta Rule To Adapt Sigmoid Functions
In this paper an extension of the generalized delta rule to adapt sigmoid functions is presented. The proposed learning procedure retains the standard generalized delta rule for weights changes and introduces changes of the sigmoid functions parameters in the same fashion. The adaptation of the nonlinearities so introduced allows to expect an acceleration of the learning and a better adaptation to the input pattern distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信