粒子群算法在中压网络补偿优化中的应用

M. Paar, P. Toman
{"title":"粒子群算法在中压网络补偿优化中的应用","authors":"M. Paar, P. Toman","doi":"10.1109/PCT.2007.4538623","DOIUrl":null,"url":null,"abstract":"This article describes the possibilities of solving optimal distribution of capacitors by particle swarm optimization (PSO) used in parallel compensation of medium voltage (MV) distribution network. PSO is a suitable tool for solving combinatorial problems benefiting from low requirements for criterial function. An algorithm looks for such a parameter set-up that has a minimum price and a minimum level of the total power losses and a minimum cost of capacitors and minimum maintenance expenses, all of this under given limitations. Its functionality is demonstrated on the example of a power network.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Utilization of Particle Swarm Optimization Algorithm for Optimization of MV Network Compensation\",\"authors\":\"M. Paar, P. Toman\",\"doi\":\"10.1109/PCT.2007.4538623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes the possibilities of solving optimal distribution of capacitors by particle swarm optimization (PSO) used in parallel compensation of medium voltage (MV) distribution network. PSO is a suitable tool for solving combinatorial problems benefiting from low requirements for criterial function. An algorithm looks for such a parameter set-up that has a minimum price and a minimum level of the total power losses and a minimum cost of capacitors and minimum maintenance expenses, all of this under given limitations. Its functionality is demonstrated on the example of a power network.\",\"PeriodicalId\":356805,\"journal\":{\"name\":\"2007 IEEE Lausanne Power Tech\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Lausanne Power Tech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCT.2007.4538623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了用粒子群算法求解中压配电网并联补偿中电容器最优分配的可能性。粒子群算法对准则函数要求低,是求解组合问题的理想工具。算法寻找这样一个参数设置,它具有最小的价格和最小的总功率损耗水平,最小的电容器成本和最小的维护费用,所有这些都是在给定的限制下。以电网为例,对其功能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of Particle Swarm Optimization Algorithm for Optimization of MV Network Compensation
This article describes the possibilities of solving optimal distribution of capacitors by particle swarm optimization (PSO) used in parallel compensation of medium voltage (MV) distribution network. PSO is a suitable tool for solving combinatorial problems benefiting from low requirements for criterial function. An algorithm looks for such a parameter set-up that has a minimum price and a minimum level of the total power losses and a minimum cost of capacitors and minimum maintenance expenses, all of this under given limitations. Its functionality is demonstrated on the example of a power network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信