音频/语音隐写分析技术的比较研究

Catherine Paulin, S. Selouani, É. Hervet
{"title":"音频/语音隐写分析技术的比较研究","authors":"Catherine Paulin, S. Selouani, É. Hervet","doi":"10.1109/CCECE.2017.7946765","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of four steganalysis techniques for speech/audio files. The Mel-Frequency Cepstral Coefficients (MFCCs) are used for the acoustical analysis of the audio files. The following steganalyzers are assessed: Support Vector Machines (SVMs), Gaussian Mixture Models (GMMs), Deep Belief Networks (DBNs) and Recurrent Neural Networks (RNNs). These steganalysis methods are tested on three different steganographic approaches. Our experiments were carried out by using three steganographic techniques, namely, StegHide, Hide4PGP and FreqSteg that were applied to the Noizeus corpus. The results showed that the GMMs-based technique performed the best by reaching a perfect classification rate, without any error, followed by the SVMs, DBNs and RNNs.","PeriodicalId":238720,"journal":{"name":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study of audio/speech steganalysis techniques\",\"authors\":\"Catherine Paulin, S. Selouani, É. Hervet\",\"doi\":\"10.1109/CCECE.2017.7946765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study of four steganalysis techniques for speech/audio files. The Mel-Frequency Cepstral Coefficients (MFCCs) are used for the acoustical analysis of the audio files. The following steganalyzers are assessed: Support Vector Machines (SVMs), Gaussian Mixture Models (GMMs), Deep Belief Networks (DBNs) and Recurrent Neural Networks (RNNs). These steganalysis methods are tested on three different steganographic approaches. Our experiments were carried out by using three steganographic techniques, namely, StegHide, Hide4PGP and FreqSteg that were applied to the Noizeus corpus. The results showed that the GMMs-based technique performed the best by reaching a perfect classification rate, without any error, followed by the SVMs, DBNs and RNNs.\",\"PeriodicalId\":238720,\"journal\":{\"name\":\"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.2017.7946765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.2017.7946765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对语音/音频文件的四种隐写分析技术进行了比较研究。Mel-Frequency倒谱系数(MFCCs)用于音频文件的声学分析。评估了以下隐写分析器:支持向量机(svm),高斯混合模型(GMMs),深度信念网络(dbn)和循环神经网络(rnn)。这些隐写分析方法在三种不同的隐写方法上进行了测试。我们的实验使用了三种隐写技术,即StegHide, Hide4PGP和FreqSteg,这些技术应用于Noizeus语料库。结果表明,基于gmms的分类准确率最高,没有出现任何错误,其次是svm、dbn和rnn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of audio/speech steganalysis techniques
This paper presents a comparative study of four steganalysis techniques for speech/audio files. The Mel-Frequency Cepstral Coefficients (MFCCs) are used for the acoustical analysis of the audio files. The following steganalyzers are assessed: Support Vector Machines (SVMs), Gaussian Mixture Models (GMMs), Deep Belief Networks (DBNs) and Recurrent Neural Networks (RNNs). These steganalysis methods are tested on three different steganographic approaches. Our experiments were carried out by using three steganographic techniques, namely, StegHide, Hide4PGP and FreqSteg that were applied to the Noizeus corpus. The results showed that the GMMs-based technique performed the best by reaching a perfect classification rate, without any error, followed by the SVMs, DBNs and RNNs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信