{"title":"使用初始反应嗅觉印迹和高级分类器改进的电子鼻检测","authors":"O. Uluyol, A. Wood, M. Kaiser, K. Arnold","doi":"10.1109/ICSENS.2003.1279138","DOIUrl":null,"url":null,"abstract":"This paper presents a new smellprint derived from Cyra-nose 320 electronic nose, and a robust classification method. The new smellprint is based on the initial reactions of the chemiresistors rather than the bulk relative resistance change. This paper also presents a robust classification method employing Support Vector Machine method. Various combinations of the two smellprints-including their projections to a small number of principal components, are analyzed. The binary Support Vector Machine classification results are filtered through two different mechanisms; a set threshold on the total vote, and a winner-take-all method The classification accuracy is determined through the leave-one-out procedure. The developed system is used for identifying 5 compounds. Promising results are obtained in terms of improved detection at low concentrations and reduced false alarm rates.","PeriodicalId":369277,"journal":{"name":"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved E-nose detection using initial reaction smellprint and advanced classifiers\",\"authors\":\"O. Uluyol, A. Wood, M. Kaiser, K. Arnold\",\"doi\":\"10.1109/ICSENS.2003.1279138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new smellprint derived from Cyra-nose 320 electronic nose, and a robust classification method. The new smellprint is based on the initial reactions of the chemiresistors rather than the bulk relative resistance change. This paper also presents a robust classification method employing Support Vector Machine method. Various combinations of the two smellprints-including their projections to a small number of principal components, are analyzed. The binary Support Vector Machine classification results are filtered through two different mechanisms; a set threshold on the total vote, and a winner-take-all method The classification accuracy is determined through the leave-one-out procedure. The developed system is used for identifying 5 compounds. Promising results are obtained in terms of improved detection at low concentrations and reduced false alarm rates.\",\"PeriodicalId\":369277,\"journal\":{\"name\":\"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2003.1279138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE Sensors 2003 (IEEE Cat. No.03CH37498)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2003.1279138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved E-nose detection using initial reaction smellprint and advanced classifiers
This paper presents a new smellprint derived from Cyra-nose 320 electronic nose, and a robust classification method. The new smellprint is based on the initial reactions of the chemiresistors rather than the bulk relative resistance change. This paper also presents a robust classification method employing Support Vector Machine method. Various combinations of the two smellprints-including their projections to a small number of principal components, are analyzed. The binary Support Vector Machine classification results are filtered through two different mechanisms; a set threshold on the total vote, and a winner-take-all method The classification accuracy is determined through the leave-one-out procedure. The developed system is used for identifying 5 compounds. Promising results are obtained in terms of improved detection at low concentrations and reduced false alarm rates.