{"title":"Implementasi Algoritma 2 Step Kalman Filter Untuk Mengurangi Noise Pada Estimasi Data Accelerometer","authors":"Wahyu Sukestyastama Putra","doi":"10.30645/J-SAKTI.V3I1.108","DOIUrl":null,"url":null,"abstract":"An accelerometer is a useful sensor in technological development. Currently, the accelerometer is found on smartphone devices, navigation devices, and wearable devices. However, processing the sensor output signal into data that can be interpreted is not easy. This is because the output of an accelerometer sensor has significant noise. In this study, the authors are interested in developing an estimation method using a Kalman Filter. Kalman filter is an estimator so it is expected that the sensor data are more resistant to noise interference. In this study, the author innovated the 2 step Kalman filter. The study was conducted because the use of 1 step still has noise on the estimation results. Based on the analysis of the algorithm simulation results, it can be concluded that the Kalman filter 2-step algorithm has good performance in estimating the accelerometer sensor output. When compared with the Kalman filter 1 step algorithm, the Kalman filter 2 step algorithm has a smaller average error estimation and is able to achieve a constant/stable condition faster than the Kalman filter 1 step method","PeriodicalId":402811,"journal":{"name":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-SAKTI (Jurnal Sains Komputer dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30645/J-SAKTI.V3I1.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Algoritma 2 Step Kalman Filter Untuk Mengurangi Noise Pada Estimasi Data Accelerometer
An accelerometer is a useful sensor in technological development. Currently, the accelerometer is found on smartphone devices, navigation devices, and wearable devices. However, processing the sensor output signal into data that can be interpreted is not easy. This is because the output of an accelerometer sensor has significant noise. In this study, the authors are interested in developing an estimation method using a Kalman Filter. Kalman filter is an estimator so it is expected that the sensor data are more resistant to noise interference. In this study, the author innovated the 2 step Kalman filter. The study was conducted because the use of 1 step still has noise on the estimation results. Based on the analysis of the algorithm simulation results, it can be concluded that the Kalman filter 2-step algorithm has good performance in estimating the accelerometer sensor output. When compared with the Kalman filter 1 step algorithm, the Kalman filter 2 step algorithm has a smaller average error estimation and is able to achieve a constant/stable condition faster than the Kalman filter 1 step method