S. A. Chen, Adam J. Makarucha, Nebula Alam, W. Sherchan, Simon Harris, G. Yiapanis, Christopher J. Butler
{"title":"评估个人财务建议的目标建议的适当性","authors":"S. A. Chen, Adam J. Makarucha, Nebula Alam, W. Sherchan, Simon Harris, G. Yiapanis, Christopher J. Butler","doi":"10.1109/GlobalSIP45357.2019.8969340","DOIUrl":null,"url":null,"abstract":"Over the years, the number of consumers seeking personal financial advisory services has grown globally. However, recent studies indicate a worrying decline in consumers’ trust and confidence in advisers and financial institutions, as well as low regulatory compliance rates. Inspiring consumer trust through increased vigilance of advice is not possible using current auditing practices as reviews are manual, time-consuming and complex. In this paper, we describe a generalised framework which leverages machine learning approaches to systematically characterise the risk status of financial advice documents prior to client delivery. We show how the framework presented provides a comprehensive, accurate and efficient compliance review of financial advice documents for financial advisers and compliance officers alike.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluating goal-advice appropriateness for personal financial advice\",\"authors\":\"S. A. Chen, Adam J. Makarucha, Nebula Alam, W. Sherchan, Simon Harris, G. Yiapanis, Christopher J. Butler\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the years, the number of consumers seeking personal financial advisory services has grown globally. However, recent studies indicate a worrying decline in consumers’ trust and confidence in advisers and financial institutions, as well as low regulatory compliance rates. Inspiring consumer trust through increased vigilance of advice is not possible using current auditing practices as reviews are manual, time-consuming and complex. In this paper, we describe a generalised framework which leverages machine learning approaches to systematically characterise the risk status of financial advice documents prior to client delivery. We show how the framework presented provides a comprehensive, accurate and efficient compliance review of financial advice documents for financial advisers and compliance officers alike.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating goal-advice appropriateness for personal financial advice
Over the years, the number of consumers seeking personal financial advisory services has grown globally. However, recent studies indicate a worrying decline in consumers’ trust and confidence in advisers and financial institutions, as well as low regulatory compliance rates. Inspiring consumer trust through increased vigilance of advice is not possible using current auditing practices as reviews are manual, time-consuming and complex. In this paper, we describe a generalised framework which leverages machine learning approaches to systematically characterise the risk status of financial advice documents prior to client delivery. We show how the framework presented provides a comprehensive, accurate and efficient compliance review of financial advice documents for financial advisers and compliance officers alike.