快速联合图像去噪和超分辨率的频率分解网络

Guangxiao Niu
{"title":"快速联合图像去噪和超分辨率的频率分解网络","authors":"Guangxiao Niu","doi":"10.1109/ICCECE58074.2023.10135301","DOIUrl":null,"url":null,"abstract":"Image denoising (DN), demosaicing (DM) and super-resolution (SR) are the key tasks of the low-level vision. Joint demosaicing, denoising and Super-resolution (JDDSR) can effectively improve the image quality. However, the previous methods explored the feasibility of tasks more than the characteristics of DM, DN and SR. Meanwhile, the joint training also brought computational burden and the three tasks process information at different frequencies. DN and DM pay more attention to low-frequency (LF) information, while SR is used to recover the lost high-frequency (HF) information. In this work, we use the way of Laplace pyramid to separate the HF and LF of the image, and use different branches to learn the information of different frequencies. In order to reduce the computational burden, we redesign the network architecture and use the form of non-parametric up-sampling to generate the results. Experiments demonstrate that our method can achieve results similar to existing methods with very small computational effort and storage.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Decomposition Network for Fast Joint Image Demosaic, Denoising and Super-Resolution\",\"authors\":\"Guangxiao Niu\",\"doi\":\"10.1109/ICCECE58074.2023.10135301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image denoising (DN), demosaicing (DM) and super-resolution (SR) are the key tasks of the low-level vision. Joint demosaicing, denoising and Super-resolution (JDDSR) can effectively improve the image quality. However, the previous methods explored the feasibility of tasks more than the characteristics of DM, DN and SR. Meanwhile, the joint training also brought computational burden and the three tasks process information at different frequencies. DN and DM pay more attention to low-frequency (LF) information, while SR is used to recover the lost high-frequency (HF) information. In this work, we use the way of Laplace pyramid to separate the HF and LF of the image, and use different branches to learn the information of different frequencies. In order to reduce the computational burden, we redesign the network architecture and use the form of non-parametric up-sampling to generate the results. Experiments demonstrate that our method can achieve results similar to existing methods with very small computational effort and storage.\",\"PeriodicalId\":120030,\"journal\":{\"name\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECE58074.2023.10135301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像去噪(DN)、去马赛克(DM)和超分辨率(SR)是低层次视觉的关键任务。联合去马赛克、去噪和超分辨率(JDDSR)可以有效地提高图像质量。然而,以往的方法探索的任务的可行性不仅仅是DM、DN和sr的特点,同时,联合训练也带来了计算负担,三种任务处理的信息频率不同。DN和DM更关注低频(LF)信息,而SR则用于恢复丢失的高频(HF)信息。在这项工作中,我们使用拉普拉斯金字塔的方式分离图像的高频和低频,并使用不同的分支来学习不同频率的信息。为了减少计算量,我们重新设计了网络结构,并采用非参数上采样的形式来生成结果。实验表明,该方法可以在很小的计算量和存储空间下获得与现有方法相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Decomposition Network for Fast Joint Image Demosaic, Denoising and Super-Resolution
Image denoising (DN), demosaicing (DM) and super-resolution (SR) are the key tasks of the low-level vision. Joint demosaicing, denoising and Super-resolution (JDDSR) can effectively improve the image quality. However, the previous methods explored the feasibility of tasks more than the characteristics of DM, DN and SR. Meanwhile, the joint training also brought computational burden and the three tasks process information at different frequencies. DN and DM pay more attention to low-frequency (LF) information, while SR is used to recover the lost high-frequency (HF) information. In this work, we use the way of Laplace pyramid to separate the HF and LF of the image, and use different branches to learn the information of different frequencies. In order to reduce the computational burden, we redesign the network architecture and use the form of non-parametric up-sampling to generate the results. Experiments demonstrate that our method can achieve results similar to existing methods with very small computational effort and storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信