测试机器学习计算机程序的数据集覆盖

S. Nakajima, Hai Ngoc Bui
{"title":"测试机器学习计算机程序的数据集覆盖","authors":"S. Nakajima, Hai Ngoc Bui","doi":"10.1109/APSEC.2016.049","DOIUrl":null,"url":null,"abstract":"Machine learning programs are non-testable, and thus testing with pseudo oracles is recommended. Although metamorphic testing is effective for testing with pseudo oracles, identifying metamorphic properties has been mostly ad hoc. This paper proposes a systematic method to derive a set of metamorphic properties for machine learning classifiers, support vector machines. The proposal includes a new notion of test coverage for the machine learning programs; this test coverage provides a clear guideline for conducting a series of metamorphic testing.","PeriodicalId":339123,"journal":{"name":"2016 23rd Asia-Pacific Software Engineering Conference (APSEC)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Dataset Coverage for Testing Machine Learning Computer Programs\",\"authors\":\"S. Nakajima, Hai Ngoc Bui\",\"doi\":\"10.1109/APSEC.2016.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning programs are non-testable, and thus testing with pseudo oracles is recommended. Although metamorphic testing is effective for testing with pseudo oracles, identifying metamorphic properties has been mostly ad hoc. This paper proposes a systematic method to derive a set of metamorphic properties for machine learning classifiers, support vector machines. The proposal includes a new notion of test coverage for the machine learning programs; this test coverage provides a clear guideline for conducting a series of metamorphic testing.\",\"PeriodicalId\":339123,\"journal\":{\"name\":\"2016 23rd Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 23rd Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC.2016.049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 23rd Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC.2016.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

机器学习程序是不可测试的,因此建议使用伪oracle进行测试。虽然变形测试对于伪神谕的测试是有效的,但是识别变形属性一直以来都是特别的。本文提出了一种系统的方法来推导机器学习分类器,即支持向量机的一组变质性质。该提案包括机器学习程序测试覆盖率的新概念;这个测试覆盖范围为进行一系列变质测试提供了一个清晰的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dataset Coverage for Testing Machine Learning Computer Programs
Machine learning programs are non-testable, and thus testing with pseudo oracles is recommended. Although metamorphic testing is effective for testing with pseudo oracles, identifying metamorphic properties has been mostly ad hoc. This paper proposes a systematic method to derive a set of metamorphic properties for machine learning classifiers, support vector machines. The proposal includes a new notion of test coverage for the machine learning programs; this test coverage provides a clear guideline for conducting a series of metamorphic testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信